A SIMPLIFIED SUBBAND NOISE REDUCTION
METHOD FOR AUDIO SIGNALS IN
TELECOMMUNICATION

Mohona Jahan
Computer Science and Engineering
Brac University
Dhaka, Bangladesh
mohona.jahan@g.bracu.ac.bd

Abstract—A method for lowering static background noise in
voice time series—which might also be changing—is given. A
full-band time sequence is divided into regular grid subbands
using a flawless restoration bandpass filter. Every initial code
undergoes a detection check, and the outcomes are utilized to
dynamically modify the amplitude given to each subband. When
the full-band time sequence is rebuilt, the background noise level
is lower than the speech frequency. Real-world situations can
yield noise reductions of 12 to 18 dJ3 for several purposes.
Instances of both telecommunications-level (narrowband) and
teleconferencing-level (wideband) speech will be used to illustrate
the process. The technique has been shown to significantly
improve the quality of speech recorded, as seen in tests employing
conventional speech coders.

Index Terms—subband noise reduction, narrowband, wide-
band, telecommunication

I. INTRODUCTION

The understanding that Wiener-filter computing, among
other activities, could be achieved by utilizing subband infras-
tructures emerged with the convergence of electronic multirate
perceptual theory in the 1970s and 1980s [I]. The spectrum
subtraction method, as proposed by Boll [2], among others,
established electronic noise reduction technology for voice
improvement. Subsequently, spectrum reduction and a subband
gain adjustment approach they called “spectral magnitude ex-
pansion” had similarities, according to Etter and Moschytz [3].
Subband noise reduction techniques have lately been the sub-
ject of patents [4]. All of these methods are ’blind” in the sense
that the algorithm only knows the noise-corrupted speech.
Therefore, the algorithm must create bootstrap predictions of
the signal as well as noise in order to improve the voice
signal-to-noise ratio. A subband noise reduction technique for
telephone and teleconference-level voice is shown here. The
approach presented is comparable to that in [3], but it varies
from that approach in terms of subband filter design, how
signal and noise frequencies are estimated, and the heuristic
processes employed to adjust the subband signal. The method
is good in reliability and minimal in computational complexity,
fulfilling architectural objectives.
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II. ALGORITHM DESCRIPTION
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The noise removal technique’s signal-flow model is shown
in Fig. 1. Subband synthesizing, subband signal-to-noise bend-
ing and boost computation, and subband processing (prote-
olysis) make up the algorithm’s three main parts (fullband
reconstruction). The discrete Fourier transform (DFT) filter
bank approach 121 is used by the subband design to produce a
flawless reconstruction filter bank. Although the mathematical
framework of this approach is more straightforward, it is the
same as a subclass of so-called ”polyphase filter banks.” Now,
for convenience, here is a quick description of this subband
filtering technique. A block of new time is added at the
beginning of every operating epoch. In an N-sample shift
register, a sequence of data is moved. Generally, L = 16 or 32



and N= 64 or 128 for the activity of relevance. The length-N
analytical window, which is the prototype FIR filter for the
filter bank, is multiplied by the accumulated data before being
modified using an N-point DFT. The DFT outputs frequency
bins, each of which corresponds to a new structure time-series
sample for the associated subband frequency spectrum. The
relationship between sample rate and transformation duration
determines every subband’s wavelength.

During subband evaluation, the subband signal-to-noise
bending and gain computing blocks are given the vector
of the subband time series. These elements are covered in
further detail in Section 3.2. The subband oscillator first
performs an inverted DFT transformation on the gain-modified
vector of the subband time series in order to recreate the
noise-reduced full-band time series. Applying the synthesizing
window produces an outcome that is overlaid and stored in the
outcome aggregate for N samples. The outcome of the shift-
accumulator then generates a block of L-prepared samples.
In order to preserve the filter bank’s following characteristics,
the prototype subband filter, input-output block size L, and
transformed block size N are selected:

1. zero subband-level time-domain convolution, 2. zero
subband-level frequency analysis convolution, and 3. complete
restoration (universal transfer function) when synthesis is
done right after inspection, without any further procedure.
Additionally, for testing reasons, the analytic and synthesized
frames employ a similar prototype FIR filter, which was itself
created from a Kaiser data frame. Due to these simplifying as-
sumptions, a modular subband structure is produced, allowing
for simple modifications to the filter bank parameters.

B. 3.2 Subband Voice Activity Detection

3.2.1 Signal and Noise Level Estimation: A library of
speech activation sensors is depicted receiving subband time
series generated by the analytic filter bank in Figure 1. The
time-series envelope’s long- and short-term standardization are
compared for every sensor in the subband. The short-term
aggregate determines the transmitted signal while speech is
present, whereas the long-term average determines the motion-
less, or noisy, portion of the subband time series framework.
Utilizing nonlinear single-pole recursions, the noise and signal
estimations are calculated.

s(i) = as (i-1) +(-a) Ix (i)l (1a)

(14 n(i) = pn(i-1) + (I-p)Ix@i)l (1b)

where s(i) and n(i) are indeed the noise and signal estima-
tions, correspondingly, at subband time position I and recursive
parameters a and p are provided by

Every subsequent sampling period updates estimations s(i)
and n(i) with the size of the subband time-series sample, k(i)l.
Based on the connection of Ix(i) I to the present estimation,
alpha and beta have various “attack” and ”decay” quantities. In
a number of speech data processing devices, such as vocoders
and speakerphones, the estimation methods (la) and (Ib) are
commonly employed. These are straightforward and appealing
from a mathematical standpoint.

3.2.2 Narrow-Band and Broad-Band Detectors: Immedi-
ate speech essentially consists of either bandwidth power
(unvoiced communication), narrow-band, multiphase power
(vocal communication), or a mixture of both. To enhance
sound absorption effectiveness and lessen distortions brought
on by failed detection methods, the noise removal algorithm
employs a different power sensor for each kind of voice power.
The signal-to-noise rate, also known as the bending proportion,
is used to determine if narrow-band voice power is present in
every subband. d(i) = sA)/ n(1)...ccooereerenreennnnn (4) The findings
of two or even more narrow-band deformation proportions are
combined in a way that enhances the identification of broad-
band power. Take the aggregate bending factor into account.

An arithmetic mean of the K-I-1 subband bending indices,
focused on subband j and in relation to the subband j level
of noise, is used for subband index j. Rather than a straight
(2K+1)-subband average of (4), Eq. (5) is stated in terms of
n(j), which enhances the replication of syllable borders and
streamlines calculation. Usually K is equal to 2, 3, or 4.

3.3 Subband Gain Computation: The narrow-band and
broad-band bending rates are integrated to provide a signals
gaining experience for every subband at time index i. The
gain is provided by g@i) = 1, if (i) > 1.0( i), other-
WISE. .ot ie i 6(a) Where

and where p is the growth ratio and y and r are the
voice identification thresholds. The bending proportions are
claimed to suggest a surety of voice power at values known
as thresholds y and r. Subband time series with deflections
over the threshold are sent with unity gain to the synthesis
bank. Subband time series with deflection below the threshold
are transferred to the synthesis bank using gain determined
by (6b). determines how quickly the gain g(i) decomposes
for bending ratios below unity. Since p = I in the present
implementation, g(i) degrades linearly further with subband
bending ratio (s).

III. RESULTS

The results of analyzing loud speech using the suggested
subband noise removal strategy are shown in a sequence of
figures in Fig. 2. A section of the original time series for a
string of phonetically balanced phrases captured in a car mov-
ing at highway speeds is shown in the top trace of Figure 2 (a).
The voice was captured using a wireless phone’s microphone
preamplifier channels, which were afterwards digitalized at an
8 KHz sample rate. The result of the subband noise - reducing
method is displayed in the lower trace in (a) for the appropriate
noise-reduced section. Spectrograms matching the time series
are shown in Fig. 2(b).

For the time period [3.5,6.0] seconds, h(a) (second sen-
tence). The spectrograms demonstrate, at least visually, that
there is no discernible distortion introduced by the noise
reduction technique. The aggregated ambient noise power
spectra for the unprocessed and noise-reduced time series are
shown in Fig. 2(c). As can be observed, the noise level of the
treated time series is around 18 dB lower throughout the band
than that of the original time series.



A. Discussion

# A heuristic method for background noise suppression uses
# the narrow- and broad-band identification data of (4) and
& (5) and the gain extension algorithm of (6b). Other plans
# might be developed, and more efficiency benefits can be
achieved by combining the processes described here with
8 other, complementary ones. Whenever speech recognition is
: carried out using inconsistent detection statistics, such as
§ cnergy performance comparisons, the subband structure signif-
& icantly improves speech detection. This is certainly relevant for
vocal communication, which includes lots of distinct spectral
8 analysis that is melodically connected. If the identification
# statistics just include the subband of frequencies in which
the element is present, the identification of any one of such
elements is greatly improved. This is so that the subband filter
may function for that speech component as a vaguely defined
Wiener filter.

IV. CONCLUSION

As a solution, a secondary subband filter design with a sub-
band bandwidth greater than the narrow-band filter bank might
be used to identify broad-band components. This method
is preferred from a theoretical perspective because broad-
& band elements are more suited to the filter bank’s greater
#8 subband bandwidth, which is itself a consistent mechanism.
An inconsistent mixture of adjacent subband energies is pro-
duced by the sum in (5a), which is a suboptimal statistics
® in the notion described earlier. Nevertheless, the effectiveness
disparity between the two techniques is minimal for low to
substantial K in (5).
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