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Abstract—We introduce Chhaya, a derived process that allows
to build a deep learning model that is able to create photorealistic
frames of contextual animation. This model should be able to go
through the textual description given by the user and generate
photorealistic animation using deep understanding. This will
allow people’s creativity and research taken to another level.

Index Terms—animation, image, description, network, frames

I. INTRODUCTION

After the introduction of photorealistic text-to-image dif-
fusion models [1], the research on this topic has become so
popular that it led to industrial commercialization and constant
creative improvements as per usage. Although text-to-image
generation is still under research, our imagination does not
stop here. If we can generate images from textual descriptions,
can we animate them as well? Generating animation from
scratch can be extremely difficult for a computer given the
current technology we have. But can we make several frames
of images from textual description so that it behaves like an
animation? In this paper, we have generated images of same
description several times and converted it into an animation
using GLIDE method [2].

II. RELATED PREVIOUS WORKS

Ho et al. (2022) proposed and described Imagen Video, a
text-conditional video generation system that uses a cascade
of video diffusion models to generate high-definition videos.
The authors claimed their system is designed to be scalable
and to transfer findings from previous work on diffusion-
based image generation to the video generation setting. It is
capable of generating high-fidelity videos with a high degree
of controllability and world knowledge, including the ability
to generate diverse videos with text animations and 3D object
understanding. The authors apply progressive distillation to
their video models for fast, high-quality sampling. Overall, the
authors presented a promising approach for generating videos
from text. [3]

Singer et al. (2022) introduced Make-A-Video, an approach
for generating videos from text that takes advantage of recent
progress in text-to-image (T2I) generation. This approach uses
paired text-image data to learn what the world looks like and
how it is described, and unsupervised video footage to learn

how the world moves. The approach has several advantages,
including the ability to accelerate training of the T2V model,
not requiring paired text-video data, and generating videos
with the diversity of today’s image generation models. The
authors designed a spatial-temporal pipeline to generate high-
resolution, high-frame-rate videos. The authors built 2 new
datasets based on MNIST and CATER for their model. They
claims that Make-A-Video sets the new state-of-the-art in text-
to-video generation. The research paper was written profes-
sionally and in a simple standard. The work is done in details
and seems effective. [4]

Hu et al. (2022) proposed a novel video generation task
called Text-Image-to-Video generation (TI2V) that aims to
generate videos from a static image and a text description.
According to them, the key challenges of this task lie in
aligning appearance and motion from different modalities and
in handling uncertainty in text descriptions. To address these
challenges, the authors propose a Motion Anchor-based video
GEnerator (MAGE) that uses an innovative motion anchor
structure to store appearance-motion aligned representations
and allows for the injection of explicit conditions and implicit
randomness. The authors also build two new datasets for
evaluating their method. The authors claim their experiments
to show that MAGE is effective and that the TI2V task has
potential. They approach is generic and but the fact that they
created datasets for their own was itself a dedicated approach.
[5]

Fu et al. (2022) introduced a novel task called text-guided
video completion (TVC), which involves generating a video
from partial frames guided by a natural language instruction.
To address this task, the authors propose a model called Mul-
timodal Masked Video Generation (MMVG) that discretizes
the video frames into visual tokens and masks most of them
during training to perform video completion from any time
point. At inference time, a single MMVG model can address
all three cases of TVC (video prediction, rewind, and infilling)
by applying the appropriate masking conditions. The authors
evaluated MMVG on various video scenarios and show that it
is effective in generating high-quality visual appearances with
text guidance for TVC. they approach is quite different than
most other from the year of publication. Although the quality
of the output videos seem questionable. [6]

Villegas et al. (2022) presented Phenaki, a model that can



generate realistic videos from a sequence of textual prompts.
To address the challenges of generating videos from text, such
as the computational cost and limited quantities of high-quality
text-video data, the authors introduce a new model for learning
video representation that compresses the video into a small
set of discrete tokens. This tokenizer uses causal attention in
time, which allows it to work with variable-length videos. To
generate video tokens from text, the authors use a bidirectional
masked transformer conditioned on precomputed text tokens.
The generated video tokens are then detokenized to create
the actual video. The authors demonstrate that joint training
on a large corpus of image-text pairs and a smaller number
of video-text examples can result in generalization beyond
what is available in the video datasets. The authors claim that
compared to previous methods, Phenaki can generate arbitrary-
length videos from time-variable prompts in the open domain
and produces better spatiotemporal consistency than per-frame
baselines. Overall, the authors presented a promising approach
for generating videos from text. [7]

Kim et al. (2020) proposed a novel training framework
called Text-to-Image-to-Video Generative Adversarial Net-
work (TiVGAN) for generating videos based on text descrip-
tions. The authors trained their model gradually on more and
more consecutive frames, starting with a single video frame,
and this step-by-step learning process helps stabilize the train-
ing and enables the creation of high-resolution video based on
the given text descriptions. The authors claim that experiments
on various datasets show that the proposed method is effective.
Although their use in proposed model was GAN, the quality
of the videos is not high. [8]

Chen et al. (2020) proposed a novel Bottom-up GAN (Bo-
GAN) method for generating videos from a text description.
To ensure the coherence of the generated frames and match
the language descriptions semantically, the authors design a
bottom-up optimization mechanism to train BoGAN. This
mechanism includes a region-level loss via attention mech-
anism to preserve local semantic alignment and draw details
in different sub-regions of the video, as well as a frame-level
and video-level discriminator to maintain the fidelity of each
frame and the coherence across frames. The authors evaluate
the effectiveness of BoGAN on two synthetic datasets and two
real-world datasets. Although they used GNA in their model,
the model seems to be suitable for only comparatively smaller
textual descriptions. [9]

Deng et al. (2019) proposed and described a novel ap-
proach called Introspective Recurrent Convolutional GAN
(IRC-GAN) for generating videos from given text. The authors
used a recurrent transconvolutional generator that integrates
LSTM cells with 2D transconvolutional layers to take both
the definition of each video frame and temporal coherence
into account, resulting in videos with better visual quality.
They also uses mutual information introspection to measure
the semantic consistency between the generated videos and
the corresponding text. They compiled experiments on three
datasets show that IRC-GAN is effective at generating plausi-
ble videos from given text and compares favorably with state-

of-the-art methods. At the time of publication, the approach
of GAN described in this paper was a success. But it appears
that latest approaches on GAN performs a lot better than this
one. [10]

III. METHODOLOGY

In this project, we have used the GLIDE approach for
generating frames for our desired animation. GLIDE (Guided
Language-to-Image Diffusion for Generation and Editing),
a diffusion model achieves performance comparable to
DALL-E despite utilizing only one-third of the parameters.
In addition to producing images from text, GLIDE may be
used to change existing images by using natural language text
prompts to insert new objects, add shadows and reflections,
conduct image inpainting, and so on. It can also convert
basic line drawings into photorealistic photos, and it has
powerful zero-sample production and repair capabilities for
complicated circumstances.
GLIDE uses diffusion models [11] with deep neural network
in it called Imagen. Imagen is trained on pre-trained BERT
for text embedding. It is trained on the correlation between
text and images. After GLIDE trained itself, it takes a text
as sample input and generates N number of images of the
same context. Then we have taken all images into account
and combined them to produce an animation into graphics
interchange format.

A. Diffusion Models

We consider the Gaussian diffusion models introduced
by Sohl-Dickstein et al. (2015) and improved by Song
Ermon (2020b); Ho et al. (2020). Given a sample
from the data distribution x0 q(x0), we produce
a Markov chain of latent variables x1, ..., xT by
progressively adding Gaussian noise to the sample:

If the magnitude 1 t of the noise added at each step is small
enough, the posterior q(xt1—xt) is well-approximated by a
diagonal Gaussian. Furthermore, if the magnitude 1 1...T of
the total noise added throughout the chain is large enough,
xT is well approximated by N (0, I). These properties suggest
learning a model pθ(xt1|xt) to approximate the true posterior:

which can be used to produce samples x0pθ(x0) by starting
with Gaussian noise xT N (0, I) and gradually reducing the
noise in a sequence of steps xT 1, xT 2, ..., x0.
While there exists a tractable variational lower-bound on
log p(x0), better results arise from optimizing a surrogate
objective which re-weighs the terms in the VLB. To compute
this surrogate objective, we generate samples xt q(xt—x0)
by applying Gaussian noise to to x0, then train a model to



predict the added noise using a standard mean-squared error

loss:

B. Classifier-free Guidance

Ho Salimans (2021) recently proposed classifier-free guid-
ance, a technique for guiding diffusion models that does
not require a separate classifier model to be trained. For
classifier-free guidance, the label y in a class-conditional
diffusion model θ(xt|y) is replaced with a null label ∅
with a fixed probability during training. During sampling,
the output of the model is extrapolated further in the
direction of θ(xt|y) and away from (xt|∅) as follows:

C. Training

For our main experiments, we train a 3.5 billion param-
eter text-conditional diffusion model at 64 × 64 resolution,
and another 1.5 billion parameter text-conditional upsampling
diffusion model to increase the resolution to 256 × 256. For
CLIP guidance, we also train a noised 64 × 64 ViT-L CLIP
model (Dosovitskiy et al., 2020).

1) Text-conditional Models: We adopt the ADM model
architecture proposed by Dhariwal Nichol (2021), but aug-
ment it with text conditioning information. For each noised
image xt and corresponding text caption c, our model predicts
p(xt1—xt, c). To condition on the text, we first encode it
into a sequence of K tokens, and feed these tokens into a
Transformer model (Vaswani et al., 2017). The output of
this transformer is used in two ways: first, the final token
embedding is used in place of a class embedding in the
ADM model; second, the last layer of token embeddings (a
sequence of K feature vectors) is separately projected to the
dimensionality of each attention layer throughout the ADM
model, and then concatenated to the attention context at each
layer. We train our model on the same dataset as DALL-E
(Ramesh et al., 2021). We use the same model architecture as
the ImageNet 64 × 64 model from Dhariwal Nichol (2021),
but scale the model width to 512 channels, resulting in roughly
2.3 billion parameters for the visual part of the model. For the
text encoding Transformer, we use 24 residual blocks of width
2048, resulting in roughly 1.2 billion parameters. Additionally,
we train a 1.5 billion parameter upsampling diffusion model
to go from 64 × 64 to 256 × 256 resolution. This model is
conditioned on text in the same way as the base model, but
uses a smaller text encoder with width 1024 instead of 2048.
Otherwise, the architecture matches the ImageNet upsampler
from Dhariwal Nichol (2021), except that we increase the
number of base channels to 384. We train the base model for
2.5M iterations at batch size 2048. We train the upsampling
model for 1.6M iterations at batch size 512. We find that these
models train stably with 16-bit precision and traditional loss
scaling (Micikevicius et al., 2017). The total training compute
is roughly equal to that used to train DALL-E.

2) Fine-tuning: After the initial training run, we fine-tuned
our base model to support unconditional image generation.
This training procedure is exactly like pre-training, except
20token sequences are replaced with the empty sequence. This
way, the model retains its ability to generate text-conditional
outputs, but can also generate images unconditionally.

3) Image Inpainting: Most previous work that uses diffu-
sion models for inpainting has not trained diffusion models
explicitly for this task (Sohl-Dickstein et al., 2015; Song
et al., 2020b; Meng et al., 2021). In particular, diffusion
model inpainting can be performed by sampling from the
diffusion model as usual, but replacing the known region
of the image with a sample from q(xt—x0) after each
sampling step. This has the disadvantage that the model
cannot see the entire context during the sampling process
(only a noised version of it), occasionally resulting in un-
desired edge artifacts in our early experiments. To achieve
better results, we explicitly fine-tune our model to perform
inpainting, similar to Saharia et al. (2021a). During fine-
tuning, random regions of training examples are erased, and
the remaining portions are fed into the model along with
a mask channel as additional conditioning information. We
modify the model architecture to have four additional input
channels: a second set of RGB channels, and a mask channel.
We initialize the corresponding input weights for these new
channels to zero before fine-tuning. For the upsampling model,
we always provide the full lowresolution image, but only
provide the unmasked region of the high-resolution image.
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4) Limitation of GLIDE: While our model can often com-
pose disparate concepts in complex ways, it sometimes fails to
capture certain prompts which describe highly unusual objects
or scenarios. In Figure 8, we provide some examples of these
failure cases. Our unoptimized model takes 15 seconds to
sample one image on a single A100 GPU. This is much slower
than sampling for related GAN methods, which produce
images in a single forward pass and are thus more favorable
for use in real-time applications.

IV. RESULT

For testing, we have given the following text as an input
and generated 6 frames for instance in order to make the
animation.

”A black bird flying freely in the sky”

Then our model produces the following frames for our
animation.

Fig. 1. Frames of our animation

V. DISCUSSION

Although our approach could somehow generate frames for
our animation, they are yet to be clearer and more contextual.
The generated animation appears like a slideshow of images
instead of an actual animation. We had to derive Imagen
diffusion models and pre-trained BERT for training GLIDE,
due to the limitation of time and resources. But it is believed
that with more time, resources and manpower, we will be
able to improve this and make a better approach in text-to-
anomation synthesis.

VI. CONCLUSION

As the name suggests, this is a project that is aimed to build
Chhaya, an approach to produce compositional animations
from textual descriptions given by the users as per their



imaginations. This project will help people enhancing their
creativity and imaginations about what is possible and what
not. It will also help in academic presentations for students
and researchers. With further development of this project and
meeting its limitations, this can be treated as an easy tool for
commercial production in film industries as well. Although a
study has been done on Guided Language-to-Image Diffusion
for Generation and Editing, this project will take animation
production to the next level by using photorealistic image
frames and merging them together. The output of this project
will be unique every time and generate varieties of beautiful
contextual animations in real time that does not exist in the
real world opening windows to people’s creative imaginations.
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