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Abstract—All national governments and the World Health
Organization have heavily relied on modeling to determine the
most effective COVID-19 effect mitigation techniques. These have
primarily been epidemiological models designed to comprehend
the disease’s spread and the effects of various therapies. But
in addition to issues with disease transmission, a worldwide
pandemic raises many other issues and challenges, each of which
needs a unique model to determine the best approach. In this
paper, we address the difficulties brought on by the COVID-19
pandemic and how simulation modeling might assist in assisting
decision-makers in making the best judgments possible.

Index Terms—Covid-19, Data Analytics, Data Visualization,
styling, insert

I. INTRODUCTION

By mid-March 2020, 334,000 people had been affected by
the novel coronavirus disease (COVID-19), which had spread
to 190 nations in just 20 weeks from its epicenter in Wuhan,
China. More than 14,500 people died as a result. As of April 6,
2020, there were 1,210,956 sick individuals and 67,594 deaths
related to the infection. By the second week of February,
several European nations had passed through stage 3 of the
epidemic, and India was in the process of moving toward stage
3. It is generally known that the epidemic behaves differently
in the same country compared to other countries; mathematical
modeling aids in predicting the trajectory of the epidemic to
ascertain why the infection is not uniform.

In Bangladesh, the first case was recorded on January 27,
2020, whereas the COVID-19 outbreak was first noted in
Wuhan, China, at the end of December 2019. The WHO
labeled the Covid-19 outbreak a worldwide pandemic on
March 11, 2020. Since then, Covid-19 has spread quickly
over the world, resulting in numerous fatalities and devastating
socioeconomic effects. The dynamics of mobility and daily
activities are key factors in the transmission of COVID-
19. Some daily activities that involve close physical contact
contribute to the spread of SARS-COV-2. The virus spreads
due to the distances required by the spatial distribution of
activities. It is crucial to comprehend how daily activities
affect COVID-19’s dynamics in order to control and restrict
its spread [1].

The presented work aims to model the outcome using a
dataset of prior covid events and illustrate the dynamics of a
covid situation. Additionally, this investigation will simulate
COVID cases to test whether the lockdown procedure effec-
tively stops the transmission of this particular virus.

II. BACKGROUND

Since the Covid-19 epidemic, many compartmental models
have been proposed to better understand how this unique
illness spreads and to determine the most effective ways to stop
its spread. In reality, a renowned mathematician and physicist
named Daniel Bernoulli presented the first epidemiological
model in 1766. Smallpox was spreading quickly at that time.
As healthcare was not as developed as it is now, smallpox is
one of the worst diseases in human history. His main goal
was to evaluate the effectiveness of the smallpox vaccine. He
created a static model in which the ratio of expected time
spent in the susceptible condition to expected life expectancy
at birth represented the population’s division into susceptibles
and immune [2].

By creating a straightforward compartmental model for
mosquitoes and humans that demonstrated that reducing the
mosquito population below a critical level would be sufficient
to eradicate malaria, Sir Ronald Ross [3] gave us the idea
of the Basic Reproduction Rate that is now used in all the
epidemiological models we have. Previously, it was thought
that malaria could not be eradicated as long as there are
mosquitoes present in the population.

A. Recent Works

The SIR model is an option. The simplest epidemiological
model, which serves as the foundation for all others, was first
presented in 1927 by scientist William Ogilvy Kermack and
physician Anderson Gray McKendrick. [4]. The plan was to
divide the population into three compartments: susceptible,
infectious, and recovered/removed. They discovered that there
is a definite population density threshold that depends on the
infectivity rate, recovery rate, and death rate. An epidemic
won’t occur if population density is below the threshold.

In his article ”The SIR model and the Foundations of Public
Health,” Howard Weiss discussed the herd immunity concept
of preventing epidemics by immunizing only a portion of the
vulnerable class. He discovered that if the reproduction rate
is 1.3, only 23% of the population has to be immunized.
This number is 5, meaning 80% vaccination is required for
smallpox. Similar to this, it is expected that for covid-19 has a
reproduction rate of about 3 and a vaccination rate of 60–70%.
As the vaccine rollout is uneven and the virus is mutating, the
new strains are more dangerous than the previous ones, we
don’t know how much the vaccine is effective to them, and



even immunity is not permanent—whether it is gained through
vaccination or recovery, they could contract COVID-19 again.
However, achieving herd immunity only through vaccination
seems unlikely to achieve now [5] [6].

Recent modeling papers on COVID-19 primarily focus
on epidemiology, making an effort to estimate the disease’s
basic reproductive number as well as to provide estimates
of the effectiveness of various interventions in flattening the
epidemic’s growth curve to lessen the burden on the healthcare
system. The well-known SEIR model (Susceptible - Exposed
- Infectious - Recovered) is the most widely used model for
defining epidemiology. It is typically used at the population
level to express the percentage of the population in each state
at any particular time. The SEIR model is employed by Lin et
al. (2020), Fang et al. (2020), and Tang et al. (2020) to both
explain the pandemic and evaluate the effects of mass social
isolation regulations using data from China [7].

The Systems Dynamics approach has been used to develop
a mathematical model. It is based on a SIR model, with
the addition of state and auxiliary variables for hospital
capacity, contacts, contacts with sick people, and fatalities,
resulting in a model with four stock variables. Similarly, it was
able to model ”quarantines” or lockdowns and the efficiency
of contact reduction using piecewise functions. The results
demonstrate the reduction in infected individuals brought on
by the quarantines. The model was run using a 100,000-person
population. The simulations display possible infection trends
in three different circumstances [8].

According to current studies, the incubation period for
coronavirus infections is between 2 to 14 days, and the greatest
amount of time before hospitalization is 10 days [9]. The
World Health Organization (WHO) estimates that there are
between 2 to 8 weeks between the onset of clinical symptoms
and death. According to another study, viral shedding lasts
between 8 to 37 days. Furthermore, a new paper suggests de-
termining the best times to apply each intervention because the
efficacy of the interventions varies on a variety of conditions.
However, to stop the infection from spreading further, the
majority of nations have instituted a 14-day self-quarantine.
Because individual contact patterns are very dynamic and
nonhomogeneous throughout each population, it is crucial to
mathematically estimate the lockdown duration needed to stop
the spread of COVID-19 infection with respect to each country
[10]. For 4-5 days at room temperature, SARS-CoV can live on
inanimate items such as metal, wood, paper, glass, and linen.
As the peak viral load in the respiratory tract happens roughly
ten days after the onset of symptoms, it has been demonstrated
that clinically unwell people are crucial to the spread of the
SARS-CoV [11].

In March 2020, the National Provider Identifier (NPIs)
expanded across 80% of OECD countries in a 2-week time-
frame. Prior adoptions of a policy among geographically close
countries, or the number of earlier adopters in the same region,
was a key predictor of a country implementing NPIs. The
number of incidents or fatalities, the proportion of people over
65, or the nation’s hospital beds per person were all factors

that did not predict the adoption of NPIs. We all appeared to
be ”locked in this emotional elevation of COVID-19 deaths
and misery above anything else that could possibly matter,”
according to the report. The uncontested belief was that ”there
were and are no alternatives to severe methods used on entire
populations with little regard for cost and consequences.” [12]
[13]

The ”Corona Dilemma,” which is based on the so-called
”Trolley Problem” in philosophy, has been put out by
economist Paul Frijters for our consideration. Imagine that
you are the person who can ”pull the lever on the train tracks
to prevent the approaching train from running straight,” he
tells us. We have the choice of diverting the train or not.
If the train is not diverted, the virus will rage unrestrained,
resulting in COVID-19 deaths. However, ”if you pull the lever
- the diverted train will put whole countries into isolation,
destroying many global industries and thereby affecting the
livelihood of billions, which through reduced governmental
services and general prosperity will cost tens of millions
of lives [i.e., COVID-19 reaction]”. The globe pulled the
trigger, and neither modeling nor policy took into account the
unforeseen health effects of these actions. [14]

III. METHODOLOGY

The most helpful metric is the infection-fatality rate (IFR),
which response to the query ”What are the odds that I will
pass away if I get sick?” The IFR is determined by dividing
the number of COVID infections by COVID deaths:

IFR = (COV ID Deaths / COV ID Infections)

Although it looks simple, this is not the case. The causes
are twofold: (1) It’s not always clear what qualifies a ”COVID
death.” If a person with high blood pressure contracts COVID
and dies from a stroke, which caused his death—the virus
or his preexisting medical condition? (2) The high incidence
of asymptomatic carriers and persons who only experience
minor infections and forego testing make it challenging to
estimate the number of COVID infections. Despite these
difficulties, it’s crucial to calculate precise IFRs. A group
of researchers led by Megan O’Driscoll and Henrik Salje
gathered information on COVID-19 mortality in 45 countries
and almost two dozen seroprevalence investigations to get
the most accurate estimates available (which determine the
percentage of a population that has antibodies against the
coronavirus and, hence, the percentage likely to have been
infected). They identified sex- and age-specific IFRs using this
data [15].

A. Data Analysis

Several observations are important to note. First, as we have
long known, young adults (those in college or younger) are
extremely unlikely to pass away. The age ranges of 5 to 9 and
10 to 14 have the lowest mortality rates. (It is understood that
an IFR of 0.001% means that one person in that age group
will perish away for every 100,000 infected.) The risk of death



Fig. 1. Dataset

is three times higher in the 0–4 and 15–19 age groups than it
is in the 5–9 and 10–14 age groups, but it is still incredibly
low at 0.003%. (or 3 deaths for every 100,000 infected).

Second, across the 60–64 age range, the IFR gradually rises
with age. However, the IFR climbs significantly thereafter,
starting with the 65–69 age group. IFR for this group as a
whole is just over 1%. (or 1 death for every 100 infected).
There is a significant risk of mortality there. (The ”1% thresh-
old” is indicated by the red line in the chart.) The IFR then
significantly increases and is extremely frightening for persons
in their 70s and older. If infected with the coronavirus, those
aged 75 to 79 have a greater than 3% probability of dying,
while those 80 and older have a more than 8% likelihood. That
has about the same probability as rolling two dice and getting
a four.

IV. IMPLEMENTATION

The implementation has been done in three parts
nolockdowncase, self − quarantinecase, and
fulllockdowncase. Each of the implementations has
been discussed in this section part by part starting with
nolockdowncase.

A. No Lockdown Case

The matplotlib library has been utilized for the implemen-
tation. The initial population was estimated at 350 people.

When the data are analyzed, the statistical distribution yields
a value of 0.04, and the infection probabilities are set at 0.07.
The dataset gives a death chance of 0.04, and adding 0.1 shows
how likely it is for elderly people to die. According to the
data set, the infected per unit time for no lockdown process
is 70. This study implements the population setup function,
which assumes that age is a random normal range between
45 and 90 years old and that population is an empty array.
A random uniform approach has been adopted for the x
and y data. The population of the array will then have the
added parameters of covid status, age, x, y, infection rate,
and infected since. Then, utilizing the positions, directions,
and speeds, the movement adjustment function was put
into practice. A check for infection was then performed
using the parameters population and currentframe. This
process goes through each infected person to see whether
anyone is nearby. Then, to determine if someone has passed
the TIMEINFECTED frames, the live or die has been
calculated using loops per frame. The age of 65 was chosen
for this implementation because the dataset suggests that after
65, the risk of dying increases noticeably. After appending the
right updated arrays, the array was updated and the padding
was modified so that it could be plotted on a graph.

B. Full Lockdown Case

Similar to the no lockdown case instance, the param-
eters have remained the same with the addition of the
self quarantine time new parameter. Being in the asymp-
tomatic stage of covid, this is the amount of time it takes
for an infected person to quit moving. There are now four
final statuses available, including healthy, ill, immune, and
dead. For this implementation, a self quarantine function
has been proposed. This function distinguishes this file from
no lockdown case by causing afflicted individuals to cease
moving after a predetermined number of frames (to take the
asymptomatic stage of the virus into account). The matplotlib
package is then used to plot the array.

C. Self Quarantine Case

This section resembles the full lockdown case that takes
into account all circumstances. The population setup function
is updated to use a normal distribution for age because age
isn’t a uniform distribution in real life. The population size,
distribution, and death probabilities are all the same as in the
previous two implementations. Everybody who was infected
stopped moving, however, a unique function has been added
to the live or die function, forcing them to move once more.
The axes were automatically scaled after receiving the updated
array, and the graphs were then drawn.

V. RESULT

This simulation of virus transmission has been created using
matplotlib, with 3 cases has been evaluated: without lock-
down effects, no lockdown case This is merely a safeguard.
In the self-quarantine case file, sick individuals will cease
moving and a Full lockdown Case slows everyone down



while yet having the same self-quarantining effect as a self-
quarantine Case. Green denotes health, red indicates infection,
blue denotes immunity, and grey denotes death in the diagrams
below. Each case will be presented as it is below.

A. No Lockdown Case

In this instance, the infection spreads uncontrollably. This
example demonstrates how quickly a virus can spread and
serves just as a control. At some moment, about half of the
population is present. Since hospitals can only care for half
the population at once, having this in real life would increase
the risk that many people would die. However, hospital
capacity is not programmed in, therefore the simulation does
not account for this.

Figure 2 states the initial stage of the simulation. It is visible
that, at the initial stage, everyone is in healthy condition.

Fig. 2. Initial State

Next, after 50 time frame, it is visible that the covid cases
are increasing which started after the 10th time frame. Figure
3 illustrates the situation.

After that, we can see a rapid increase in covid cases where
some of the previous cases got immunity whereas after the
40th time frame the growth of covid is going exponentially
high and most of the people either are in an immunity state
or affected. In figure 4 it is clearly visible.

Finally, after the 300th time frame, it is observable that new
covid cases have not been found anymore. In the 150th epoch
death cases have been found and after the 250th epoch, the
number of death cases went high than the newly affected. We

Fig. 3. Covid Cases

Fig. 4. Rapid Covid Cases



can see a bell-shaped curve has been generated from the 50th
to 250th epoch for no lockdown case illustrated in figure 5.

Fig. 5. Death Cases

B. Full Lockdown Case

The version in which everyone is slowed down is the
toughest. This one takes the longest to clear the virus more
than 700 frames but only a few people are affected at once.
Initially, we can see no impact of covid yet in figure 6.

Then, after a very long time as illustrated in figure 7, at
the 200th epoch, the affected rate is very minimal than the no
lockdown case. The impact started from the 25th epoch and
after a long time, plenty of people is not affected.

At the next stage in figure 8, we can see in the 350th step
the covid cases are getting higher. It is unusual and can not be
determined the trend of this as it is going high for sometimes
and again going low for example after the 300th step it is
increasing but from 200 to 250 it is decreasing. However, the
infected population is very less and some immunity is visible.

After the 550th iteration, the number of the infected case
has not increased but the death rate is visible which is the
same as the infection rate. However, the healthy population is
still in great numbers,s and the death rate is very lower than
in the no-lockdown state. Figure 9 shows this result.

Finally, after the 700th iteration, it is visible that no new
covid cases have arrived. There is still a death toll but the
all-over situation is good. It is visible in figure 10.

C. Self Quarantine Case

This version prevents infected individuals from moving.
Due to the asymptomatic nature of COVID’s spread, this

Fig. 6. Initial State

Fig. 7. Covid Cases



Fig. 8. Unusual Cases

Fig. 9. Death Cases

Fig. 10. No Covid Cases

occurs with some delay. The initial stage is clear in covid
cases as illustrated in figure 11.

In the next stage, we can see the virus spread started from
the 10th epoch and it is increasing rapidly like the no lockdown
stage. After the 70th epoch, there are a lot of covid cases that
are visible in the respected figure 12.

After the 350th epoch, we can see most of the population is
immune and the increase is going low. From the 10th to 300th
we can observe a bell-shaped curve that represents a certain
increase and decrease in a particular time frame. However,
death cases started from the 100th epoch and went equal with
new cases at 350th from figure 13.

Finally, after the 400th iteration, all the newly affected cases
went zero. The death toll is still there but most of them are
immune and no new case has been discovered. Figure 14
illustrates the situation.

VI. CONCLUSION AND FUTURE WORK

The scientific viewpoint on what may be improved is
also present. In this simulation, one can acquire immunity
if one managed to survive the infection. Real life doesn’t
operate in that way. The majority of values are pretty arbitrary
and don’t accurately reflect how COVID actually functions.
This implementation didn’t factor in population density when
choosing the number of people, but some were purposefully
chosen.
Due to the lifting of the lockdown and the end of social isola-
tion, the second wave is particularly bad. The virus was also
made more contagious by the mutation. Despite a large number



Fig. 11. Initial State

Fig. 12. Rapid Covid Cases

Fig. 13. Covid Decreases

Fig. 14. Final Situation



of instances, there are fewer fatalities now than there were in
the past. To combat this virus, we must take precautions and
immunize the majority of people. When developing algorithms
to tackle the COVID-19 pandemic, which are shed light on
in this work, several challenges may prevent the beneficial
effect of the deployment of big data analytics mechanisms
in the medical sector. Understanding big data enables the
construction of proactive supply administration, such as the
health sector staff allocation algorithm and the prediction of
ICU demand, which is based on the anticipated needs of
patients and the cases in each city. Big data models like
machine learning make it easier to identify the many illness
models, symptoms, and condition advancement as well as the
dissemination agents connected to the pandemic. Benefits in
formulating policies and taking proactive measures, as well
as coming to conclusions about the distribution of medical
supplies.
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