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Abstract

Deep neural networks (DNNs) have significantly advanced various domains, but their
vulnerability to adversarial attacks poses serious concerns. Understanding these vulnera-
bilities and developing effective defense mechanisms is crucial. DeepFool, an algorithm
proposed by Moosavi-Dezfooli et al. (2016), finds minimal perturbations to misclassify
input images. However, DeepFool lacks a targeted approach, making it less effective in
specific attack scenarios. In this paper, we propose Targeted Deepfool, an augmented
version of DeepFool that allows targeting specific classes for misclassification. We also
introduce a minimum confidence score requirement parameter to enhance flexibility. Our
experiments demonstrate the effectiveness and efficiency of the proposed method across
different deep neural network architectures while preserving image integrity. The re-
sults highlight the importance of targeted attacks in evaluating DNN robustness against
adversarial manipulation.

1 Introduction
Deep neural networks (DNNs) have revolutionized many fields including but not limited to
speech recognition [4, 12], computer vision [3, 10], natural language processing [24], and
even game playing [20]. However, their high accuracy and robustness can be compromised
by adversaries who intentionally manipulate the input data to fool the model. Such attacks
can have serious consequences in real-world applications such as autonomous driving, medi-
cal diagnosis, and security systems. Therefore, understanding the vulnerabilities of DNNs to
adversarial attacks and developing effective defense mechanisms has become an important
research area in machine learning and computer security. DeepFool is one of the algorithms,
proposed by Moosavi-Dezfooli et al. [15], which iteratively finds the minimum amount of
perturbations required to push a given input image to a misclassified region of the feature
space. They use the following equation that defines an adversarial perturbation as the mini-
mal perturbation r that is sufficient to change the estimated label k̂(x):

∆(x; k̂) := min
r
||r||2 subject to k̂(x+ r) ̸= k̂(x) (1)

where, x is an image, and k̂(x) is the estimated label. With this, an image can be misclassified
with a minimal amount of perturbations. But this approach is not focused on any specific
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Original Image Perturbations
Change: 0.23%
SSIM: 99.99%

Perturbed Image:
True Class: Goose (48.51%)

Perturbed Class: Albatross (48.57%)

DeepFool

Original Image Perturbations
Change: 1.57%
SSIM: 99.09%

Perturbed Image:
True Class: Goose (0.00%)

Target Class: Mongoose (95.10%)

Targeted DeepFool

Figure 1: Comparison between original DeepFool and our proposed Targeted DeepFool.
Perturbation image is scaled 20 times for visibility.

target. Instead, the images are classified as a different class with a minimal amount of per-
turbation. Thus, if an image x can be misclassified as some class A with less perturbation
than some other class B, DeepFool will choose to use the perturbation that misclassifies x as
class A. While small perturbations by untargeted attacks can fool a deep neural network by
misclassifying data, targeted attacks may be more harmful as they aim to deceive the DNN
into producing a specific output. An attacker may be able to deceive a self-driving car into
misidentifying a stop sign as a green light. Or it can be used to fool security systems that use
DNNs for face recognition. Therefore an accurate method of targeted attack to fool DNNs
are necessary to make the models more robust against these type of attacks. While the Deep-
Fool algorithm is a good approach to finding minimal perturbations to misclassify data to an
unspecific target, a targeted approach is much needed.
To fill the gap, in this paper, we propose Targeted Deepfool, an approach to the DeepFool al-
gorithm where we can target the class that we want to misclassify. We also want to augment
DeepFool and make it more parametrized by giving the option to set minimum confidence
score requirement. We show that the algorithm is simpler than the original, in terms of time
complexity, and effective to fool different deep neural network architectures towards specific
classes. Afterwards, we examine the performance of the proposed method. Our experiments
show that the proposed system performs really efficiently on different devices, keeping the
integrity of the image almost similar to the original one.

2 Related Works
In this section, we cover existing literature related to different adversarial attacks and data
poisoning techniques against image classification models.
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Adversarial attacks are done on data to perturb it to some extent so that it gets misclassi-
fied by an ML model. These attacks can be implemented in several ways in the form of
black-box, white-box, and grey-box attacks. There are also data poisoning attacks which
include label flipping, clean label, and backdoor attacks. Goodfellow et al. [9] present Fast
Gradient Sign Method (FGSM), a type of adversarial attack for image classification that in-
volves adding minimal noise to each pixel of an image, based on the gradient of the loss
function with respect to the image. The required gradient is computed efficiently by us-
ing backpropagation. The algorithm proposed by Carlini and Wagner [2] finds the smallest
noise to be added to an image to misclassify it. The Adversarial Patch attack, as proposed
by Brown et al. [1], involves the creation of a small image patch that can be placed in the
real world. When photographed and presented to an image classifier, the patch can cause the
image to be misclassified as a chosen target class. The patch can be designed to be small
and inconspicuous which makes it difficult to detect. The Universal adversarial perturbations
by Moosavi-Dezfooli et al. [16] fools a deep neural network by adding the same perturba-
tions to multiple images, causing it to misclassify all of the affected images. The paper by
Shafahi et al. [19] applies a one-shot poisoning attack by injecting a single poison instance
into a clean dataset, causing the model to misclassify a specific target instance without nega-
tively impacting its performance on other examples. They also introduced a "watermarking"
strategy that makes the poisoning more reliable. Huang et al. [13] proposed MetaPoison, a
meta-learning approach for crafting poisons to fool neural networks using clean-label data
poisoning. Their method outperforms previous approaches on various datasets and architec-
tures, even for proprietary ML-as-a-service models that cannot be accessed or modified. This
paper by Gao et al. [7] presents a black-box attack method called Patch-wise Iterative Fast
Gradient Sign Method that outperforms pixel-wise methods in generating transferable adver-
sarial examples against various mainstream models. The method can be used as a baseline
for generating more transferable adversarial attacks. This paper by Zhao et al. [26] presents
a GAN-based method for generating realistic adversarial examples for black-box classifiers
in visual and textual tasks. Their approach involves training a generator network to pro-
duce perturbations that can be added to the original input to create an adversarial example.
This paper by Di et al. [5] presents a camouflaging approach for targeted poisoning attacks
based on the gradient-matching approach of Geiping et al [8]. The method generates a new
set of points to undo the impact of the poison set, achieving better success rates than the
poisoning approach on various models and datasets. Muñoz-González et al. [17] proposed
pGAN, a scheme that generates poisoning points to maximize the error of a target classifier
while minimizing detectability by a discriminator. The authors highlighted that pGAN can
be used to study the tradeoffs between a system’s performance and robustness as the num-
ber of poisoning points increases. Zhao et al. [27] proposed PerC-C&W and PerC-AL, two
methods for creating adversarial images that use perceptual color distance to improve their
imperceptibility.

3 Methodology

3.1 Background of Vanilla DeepFool

For the multiclass classifier, each class is on a hyperplane that divides one class from an-
other, and xxx is the input that gets classified to whichever hyperplane it lies on. The original
DeepFool algorithm finds the closest hyperplane and pushes xxx towards it and makes it mis-
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classified with the minimum amount of perturbation. This is done iteratively until the image
is misclassified. In the end, the algorithm returns the total perturbations r̂rr. The following
equations are used to calculate the closest hyperplane, l̂ where www′k is a vector that points in
the direction of the decision boundary between the predicted label and the kth largest activa-
tion. This is done by subtracting the gradient of the predicted label from the gradient of the
kth largest activation. f ′k is the difference between the labels:

www′k← ∇ fk(xxxi)−∇ fk̂(xxx0)
(xxxi) (2)

f ′k← fk(xxxi)− fk̂(xxx0)
(xxxi) (3)

After calculating www′k and f ′k, the following equation calculates the closest hyperplane l̂ and
the minimum amount of perturbation for kth iteration, ri:

l̂← argmin
k ̸=k̂(xxx0)

| f ′k|
||www′k||2

(4)

rrri←
| f ′

l̂
|

||www′′′
l̂
||22

www′′′l̂ (5)

Whenever k̂(xxxi) changes into a different label, the loop is stopped and total perturbation, r̂ is
returned.

3.2 Targeted DeepFool
Now to turn the original DeepFool algorithm to misclassify an image into a specific target
class we propose the algorithm shown in Algorithm 2 below.

Algorithm 1 DeepFool: multi-class case
1: Input: Image xxx, classifier f .
2:
3: Output: Perturbation r̂rr.
4: Initialize xxx0← xxx, i← 0.
5: while k̂(xxxi) = k̂(xxx0) do
6: for k ̸= k̂(xxx0) do
7: www′k← ∇ fk(xxxi)−∇ fk̂(xxx0)

(xxxi)

8: f ′k← fk(xxxi)− fk̂(xxx0)
(xxxi)

9: end for
10: l̂← argmink ̸=k̂(xxx0)

| f ′k|
||www′k||2

11: rrri←
| f ′

l̂
|

||www′′′
l̂
||22

www′′′
l̂

12: xxxi+1← xxxi + rrri
13: i← i+1
14: end while
15: return r̂rr = ∑i rrri

Algorithm 2 Proposed: Targeted DeepFool
1: Input: Image xxx, classifier f ,
2: target class t.
3: Output: Perturbation r̂rr.
4: Initialize xxx0← xxx, i← 0.
5: while k̂(xxxi) ̸= t do
6:
7: www′k← ∇ ft(xxxi)−∇ fk(xxx0)(xxxi)
8: f ′k← ft(xxxi)− fk(xxx0)(xxxi)
9:

10: l̂← | f ′k|
||www′k||2

11: rrri←
| f ′

l̂
|

||www′′′
l̂
||22

www′′′
l̂

12: xxxi+1← xxxi + rrri
13: i← i+1
14: end while
15: return r̂rr = ∑i rrri

Figure 2: Comparison between the original DeepFool and our proposed Targeted DeepFool
algorithm.
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Instead of running the loop till the image gets misclassified, we run it till the current label is
not equal to target label. We also remove the for loop that is shown in line 6 of Algorithm
1, because we are not calculating the gradients of the best n classes that have the most
probability to be classified after the original class. This also decreases the time complexity
by O(n). We change the equations 2 and 3 to the ones shown below where www′k is now
calculating the difference between the gradients for the target class and the true class. f ′k is
calculating the perturbations needed with respect to target class and true class.

www′k← ∇ ft(xxxi)−∇ fk(xxx0)(xxxi) (6)

f ′k← ft(xxxi)− fk(xxx0)(xxxi) (7)

Since we are not comparing between the best n classes anymore we change the equation 4 to
the one below:

l̂←
| f ′k|
||www′k||2

(8)

Only with these small changes, we are able to successfully misclassify an image to a specific
class of our choosing.

4 Experimental Results
Here we apply our proposed method on multiple state of the art image classification models
and show our findings.

4.1 Experiments
Dataset: We are using the validation images of the ILSVRC2012 [18] dataset for our exper-
iments. It contains 50 thousand images with thousand different classes.
Models: We execute differerent pre-trained deep neural networks, such as, ResNet50 [11],
AlexNet [14], EfficientNet_v2 [23], GoogLeNet [21], and Inception_v3 [22] to work on our
proposed architecture. We also use one of the state-of-the-art architecture, Vision Trans-
former [6] image classification model to test our method. We use PyTorch 2.0 in different
testbed systems, which include CUDA-enabled GPUs like RTX 3060 Ti, and RTX 3070 Ti.

For the tests, we use the validation images and generated a random target class that is not
its true class. These images along with the target classes that were generated are fed into
our function. We use several hyper-parameters such as overshoot which is set to 0.02, this
is used as a termination criterion to prevent vanishing updates and oscillations. We set the
minimum amount of confidence needed as 95% and the maximum iterations as 100. This is
done because in most cases the confidence score of perturbed image is usually lower than
expected (~60%), therefore we add another condition in the while loop to make the code
run until desired confidence is reached. Although, this will lead to more perturbations. The
code will run until these conditions are met or until maximum iterations is reached. These
hyper-parameters can be tuned to one’s needs.

We calculate the confidence score for the target class by passing the output tensor through
softmax function. We find the change in image by calculating the L2 distance between
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perturbed and original image and dividing with maximum L2 distance. We also calculate the
Structural Similarity Index Measure (SSIM) [25] between the perturbed and original image
and the number of iterations needed to perturb an image.

4.2 Results

Original Images

ResNet50 EfficientNet_v2

Vision Transformer

AlexNet

GoogLeNet Inception_v3

Figure 3: Some sample images from our experiments. The perturbed classes are as follows:
Traffic light as Manhole cover, School bus as Ambulance, Acoustic guitar as Assault Rifle.
Perturbations shown in second row are scaled 20 times for visibility

Classifier Confidence Perturbations SSIM Iterations Success Time

ResNet50* 0.97 2.14% 0.99 29 0.97 0.37 s
AlexNet* 0.97 9.08% 0.92 25 0.94 0.52 s
EfficientNet_v2** 0.97 3.37% 0.98 33 0.97 0.31 s
GoogLeNet** 0.97 3.45% 0.97 33 0.97 1.48 s
Inception_v3* 0.97 2.35% 0.99 38 0.97 1.14 s
Vision Transformer* 0.96 11.27% 0.89 67 0.89 2.36 s

Table 1: Comparative analysis of our method’s performance on various classifiers. These
are the mean values from our experiment results. Here, * beside the name of the classifier
means the model is run on an RTX 3070 Ti, and ** means RTX 3060 Ti is used to run the
classifier. Also, time means the average time it takes to run on a single image.
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In Table 1, we see the results obtained from our comprehensive evaluation of various popular
image classification models.
The confidence score reflects the classifier’s level of confidence in its predictions for the
perturbed images. Our method has generated perturbed images with a mean confidence
score of 0.97, indicating that the classifiers have a 97% confidence level in their prediction
of the target class for the image. This is made possible by setting the minimum confidence
hyperparameter at 0.95.
The magnitude of perturbations added to the images, referred to as "Perturbations," quantifies
the level of changes required to deceive the classifier. Notably, the classifiers ResNet50,
EfficientNet_v2, GoogLeNet and Inception_v3 revealed a considerable vulnerability to our
approach, with perturbation rates ranging from 2.14% to 3.37%. In contrast, AlexNet and
Vision Transformer require the most amount of perturbations to fool, with rates of 9.08%
and 11.27% respectively.
ResNet50, EfficientNet_v2, GoogLeNet, and Inception_v3 consistently exhibit high mean
SSIM scores, ranging from 97 to 99. On the other hand, AlexNet and Vision Transformer
have the lowest mean SSIM scores, with 0.92 and 0.89, respectively.
The "Iterations" metric indicates the number of iterations required to achieve a successful
misclassification. The attack against classifiers EfficientNet_v2, GoogLeNet, and Incep-
tion_v3 perform consistently well, with iteration counts ranging from 33 to 38. However,
Vision Transformer requires a significantly higher number of iterations to fool it, with an
average of 67 iterations per image.
The success metric shows the percentage of images being successfully misclassified as the
randomly selected target image. The attack consistently succeeds against 97% of the dataset
when applied against ResNet50, EfficientNet_v2, GoogLeNet and Inception_v3. Keeping
up with the trend of other metrics, the attack has the lowest success rate against AlexNet and
Vision Transformer, achieving success rate of 94% and 89% respectively.
Finally, the computational time needed to execute the attack against a single image is denoted
as "Time." Notably, the attack against EfficientNet_v2 and Inception_v3 exhibited faster exe-
cution times, requiring approximately 0.31 seconds and 1.14 seconds per image respectively.
On the other hand, Vision Transformer requires the highest computational overhead, with an
average execution time of 2.36 seconds per image.

Overall, we find our method to be effective in various degrees against most of these clas-
sifiers. The results provide insights into the comparative strengths and weaknesses of the
given image classifiers under adversarial conditions, which can aid in developing improved
defense mechanisms and enhancing the overall robustness of image classifiers.

5 Discussion

During the development of the targeted DeepFool method, we observe an interesting phe-
nomenon. While the original method exhibits the ability to misclassify an image with a
minimal amount of perturbation, we notice that the confidence score associated with the per-
turbed image is often very low. This can also be seen in figure 1. This discovery prompts us
to further investigate this issue and devise a solution to address it.
To tackle this issue, we introduce an important hyperparameter that allows us to specify a
minimum confidence threshold as required. We aim to enhance the overall confidence of
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the perturbed images while maintaining their effectiveness in inducing misclassification to
specific classes by incorporating this hyperparameter into our targeted DeepFool approach.
One consequence of introducing this hyperparameter is an increase in the number of per-
turbations added to the original image. However, we find that the additional perturbations
are negligible in magnitude. Moreover, we conduct a comprehensive evaluation by compar-
ing the SSIM scores between the perturbed images and the original ones. Encouragingly,
we consistently observe high SSIM scores ranging from 0.97 to 0.99 across various classi-
fiers, as seen in table 1, indicating that the perturbations introduced by our modified method
preserve the visual similarity to the original images to a remarkable extent.

6 Conclusion
In this paper, we propose an algorithm, Targeted DeepFool, which improves on the original
DeepFool algorithm and makes it not only able to misclassify an image to a specific target
class but also achieve the desired amount of confidence needed to fool a classifier. We show
that our algorithm is simple and requires less time complexity. We demonstrate that the
algorithm performs well against various state-of-the-art image classifiers. We believe that by
training and fine-tuning the classifiers on the images generated by the algorithm, they will
become more robust to future attacks. However, it is important to note that this work was
limited to only one dataset, and future research could implement it on various datasets for a
more comprehensive evaluation. Furthermore, another area of potential future research lies
in devising an approach that minimizes computational requirements. Although the proposed
algorithm already demonstrates improved time complexity, there is still room for optimizing
its computational demands to ensure broader practical applicability.
In conclusion, by addressing the limitations of the original DeepFool algorithm, our en-
hanced targeted DeepFool method exhibits promising potential for improving the effective-
ness and robustness of adversarial attacks. We hope, these findings contribute to the ad-
vancement of adversarial machine learning and provide a foundation for further exploration
and refinement of targeted attack methods.
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