Differential Privacy

Jarin Tasnim Khan Kashfee
School of Data and Sciences
Brac University
Dhaka, Bangladesh
jarin.tasnim.khan@g.bracu.ac.bd

I. INTRODUCTION

Differential privacy (DP) is a way to preserve the privacy
of individuals in a dataset while preserving the overall
usefulness of such a dataset. Ideally, someone shouldn’t be
able to tell the difference between one dataset and a parallel
one with a single point removed. It guarantees to provide the
privacy of data when analyzing and sharing sensitive data.
To do this, randomized algorithms are used to add noise
to the data. The idea of adding noise to the data before
analyzing it is that the output of the analysis does not reveal
any individual-level information.

II. RELATED WORKS

[1] provides a comprehensive survey of differential privacy,
its definition, and its applications. It describes the key
concepts and techniques used to achieve differential privacy
and discusses some of the open challenges in the field. The
main problem of [1] would be that it addressed the need for
privacy-preserving data analysis in the context of sharing
sensitive data while preserving the privacy of individuals. The
paper [1] provided a comprehensive survey of the concept
of differential privacy, including its definition, its properties,
and its applications. It discussed the key techniques used to
achieve differential privacy, such as randomized response and
the use of noise, and the challenges in implementing and
evaluating differentially private algorithms. The result of the
paper is an overview of the state-of-the-art in differential
privacy research, highlighting its potential for enabling data
sharing while preserving privacy. About the work on this
paper, I think that the paper provided a strong foundation
for understanding differential privacy and its potential for
preserving privacy in data analysis.

[2] provides an in-depth analysis of the theoretical foundations
of differential privacy. It discusses the mathematical definitions
and theorems that underpin the concept and provides examples
of differentially private algorithms. The problem they are
tracking is they addressed the need for a theoretical foundation
for differential privacy, including its formal definition and
mathematical properties. [2] presented the mathematical
definition of differential privacy, as well as the key theorems
that underpin the concept, such as - the composition theorem
and the post-processing theorem. It also provided examples of
differentially private algorithms and discussed the trade-offs
between privacy and utility. As a result of their approach,

finally rigorous mathematical foundation for differential
privacy and demonstrated its applicability to a wide range
of data analysis tasks was provided. About the work on this
paper, I think the paper presented a theoretical foundation
of differential privacy, making it a valuable resource for
researchers.

[3] presents a framework for the design of differentially
private algorithms. It proposes a methodology for the analysis
of privacy guarantees and provides an implementation of
this framework in the form of a software library. The main
problem identified in the paper is the need for a practical
framework for design- ing differentially private algorithms
that guarantee privacy and utility.

[4] addressed the privacy risks associated with gradient
descent in federated learning, where multiple clients
contribute their data to train a shared model while preserving
their privacy. then it analyzed the privacy risks associated
with gradient descent in federated learning and proposed a
differentially private variant of the algorithm that adds noise
to the gradients to protect the privacy of individual clients. It
also presented a theoretical analysis of the privacy guarantees
of the proposed algorithm. The paper demonstrated the
effectiveness of the proposed differentially private gradient
descent algorithm on a range of machine learning tasks,
showing that it can achieve strong privacy guarantees while
maintaining high levels of accuracy as results.

[5] addressed the need for a technique to amplify the privacy
guarantees of differentially private algorithms. It proposed
a privacy amplification technique based on the idea of
mixing differentially private algorithms with noise. It also
presented a theoretical analysis of the privacy guarantees
of the proposed technique. As a result, the paper shows
that it can significantly improve the privacy guarantees of
differentially private algorithms.

[6] proposes a new privacy definition called Renyi differential
privacy (RDP). RDP is a generalization of the commonly used
privacy definition, epsilon-differential privacy (epsilon-DP),
that allows for a more flexible trade-off between privacy
and utility. [6] aims to address the problem of accurately
measuring privacy in situations where the noise added to the
data to ensure privacy can be varied. The authors argue that
epsilon-DP provides a one-size-fits-all privacy guarantee that
can be overly conservative in situations where the privacy
risk is low. The authors evaluate the effectiveness of RDP by
applying it to two common privacy preserving mechanisms:

the Laplace mechanism and the Gaussian mechanism. Then
they compared the performance of RDP to epsilon-DP on
several bench- mark datasets and shows that RDP provides
a more accurate measure of privacy while still maintaining
good utility.

[7] proposes a method for training an image embedding
model that ensures user-level differential privacy (ULDP).
The authors’ approach is to add noise to the gradients during
training to achieve ULDP. They propose a new privacy
definition called ULDP, which ensures that an adversary
cannot learn any in- formation about a specific user from
the trained model. They also introduce a new loss function
that balances the trade-off between privacy and accuracy in
the embedding model. The authors evaluate their approach
on a large-scale image dataset and show that it provides
better privacy guarantees compared to existing privacy-
preserving methods. They also demonstrate that their method
achieves competitive performance on several image retrieval
benchmarks.

[8] proposes a provably privacy-preserving algorithm for data
distillation, called DP-KIP. The authors aim to address the
problem of preserving privacy while distilling knowledge from
large datasets. The authors’ approach is to use kernel ridge
regression (KRR) with neural tangent kernels to estimate
the distilled data points, also known as kernel-inducing
points. The authors then apply differential privacy to KRR
using the differentially private stochastic gradient descent
(DP-SGD) algorithm. The authors provide a computationally
efficient implementation of DP-KIP using JAX. The authors
evaluate their approach on several image and tabular datasets
and show that DP-KIP achieves high performance while
providing differential privacy guarantees. The authors also
compared their approach with other state-of-the-art methods
and demonstrate the effectiveness of DP-KIP in terms of both
performance and privacy.

[9] provides valuable insights into the practical implementation
of differential privacy in machine learning models. It offers
guidance and best practices for deploying differentially
private machine learning models while preserving individual
privacy. It emphasizes the need for incorporating privacy
protections into machine learning systems, especially when
handling sensitive data. It highlights the potential privacy
risks associated with traditional machine learning techniques
that can inadvertently expose sensitive information about
individuals. To address these challenges, the post introduces
differential privacy as a principled approach to privacy
preservation. It explains that differential privacy ensures that
the results of computation or analysis remain practically the
same, regardless of whether an individual’s data is included
or excluded from the datasets.

Two approaches were made for training deep neural networks
with differential privacy. One approach is DP-SGD which
adds noise to the gradient computed by SGD to ensure
privacy. The Differential stochastic gradient descent(DP-
SGD) is proposed to modify the model updates that are
computed by the most common optimizer used in deep

learning which is stochastic gradient descent (SGD).

3. Update the model
parameters based on
the gradient

Current Model

- |
Per-example Clipped 2

gradients

gradients

Gradient Computation

1. Samplea
minibatch of
training data

2. Compute gradient of the loss for the minibatch

Fordiferentalprivacy clp p le radients and add noise

Sensitive (additional steps highlighted in blue)

Training Data

Stochastic gradient descent trains the above process iteratively.
In each number of iterations, a small number of training
examples (named minibatch in the figure) are sampled from
the training set. Then after that, the optimizer computes the
average model error on these examples and then differentiates
this average error from the model parameters to get a gradient
vector. After that, the main two modifications have been
made by DP-SGD to obtain differential privacy, and that are
gradients (figure-per-example gradients on a per example
basis rather than multiple examples) are clipped so that the
sensitivity is controlled and next Gaussian noise is added to
the summation.

The other approach is namely Model Agnostic Private
Learning which trains many non-private models on subsets
of sensitive data and finally uses DP to generate results.
An example was provided related to medical diagnosis
using machine learning. Suppose a healthcare provider
wants to develop a machine learning model to predict a
patient’s disease risk based on their medical records. By
incorporating differential privacy, the model can provide
accurate predictions while preventing unauthorized access to

individual health information.
Jane Smith doas

ot have cancer \‘-
.y@.\\
/' .

i Add
: Gaussian

Healthy —__

* Cancer ‘ | noise to Class with

¥ / . gach vole | ; most noisy
= g ﬁ l count voles
/ | — Healthy
) [.

Record | S/OJ Healthy]
similar to \ O\O/O
Jang's —
c
\ %O Healthy
(4]

Test Input Teachars Teacher predictions Teachar vole counts Nalsy vote counts Prediction

nce

Healthy
ca

Here in the example provided is a PATE Framework. In
DP generally, noise is added to the gradient. But instead of
adding noise to the gradient, PATE trains non-private models
which can be seen in teachers on subsets of data, and then

ask the models to on the correct prediction (Healthy / Cancer
) using a DP aggregation mechanism.

III. RESEARCH METHODOLOGY

The method used is a Differentially Private stochastic gradi-

ent descent(DP-SGD) optimizer implementing a Convolutional
Neural Network (CNN) on the MNIST dataset by adding noise
to the gradient updates during the time of training for ensuring
privacy. By adding noise to the gradients, it becomes difficult
for an attacker to distinguish between the training data of a sin-
gle individual and a group of individuals, thereby preserving
the privacy of the individuals. The randomness is introduced
in the form of noise added to the gradients computed during
training. The optimizer DPKerasSGDOptimizer, which is a
class by TensorFlow Privacy library and it extends the Keras
implementation of the SGD optimizer to incorporate DP. The
optimizer uses a Gaussian mechanism for adding noise to the
gradients with the amount of noise controlled by the privacy
budget parameter (epsilon). To train a convolutional neural
network(CNN) to recognize handwritten digits with the DP-
SGD optimizer provided by the TensorFlow library, ’tf.keras
is used. Specifically, the optimizer is used to implement the
Stochastic Gradient Descent (SGD) algorithm with differential
privacy guarantees. The privacy budget is controlled by the
value of epsilon. It is a hyperparameter that determines the
amount of noise added to the gradients during training. The
privacy budget controls the tradeoff between privacy and
model. Higher values of epsilon provide better model accuracy,
but with less privacy, whereas lower values of epsilon provide
better privacy but with reduced model accuracy. accuracy.
Finally, the accuracy of the trained model is evaluated on the
test data, and the test accuracy is recorded for each privacy
budget. The accuracy is then plotted as a function of the
privacy budget to understand the relationship between model
accuracy and privacy.
So the workflow goes by loading and preprocessing the data,
defining a model architecture, applying differentially private
optimization, training the model, evaluating the performance,
and analyzing the privacy-accuracy trade-off.

Load Data

Model

Privacy Budget
(epsilon)

Optimizer

Train Model

Accuracy of Test
Data

The implementation part of the figure begins with importing

the necessary packages including TensorFlow, NumPy, and
scikit learn. After that, it loads the data which is the MNIST
dataset, and then performs data pre-processing steps like
normalizing pixel values and converting labels to one-hot
encoding vectors. Next comes the model part, here CNN
model is defined by the Tensorflow keras. The convolution
neural network model consists of convolutional layers, max
pooling, a flatten layer and a dense layer. Then the CNN model
is trained with different privacy budgets (epsilon). The privacy
budget is defined as an array consisting of epsilon values that
control the amount of privacy protection provided. For each
epsilon values a differentially private optimizer, DPKerasSG-
DOptimizer is created. The model is then compiled with a DP
optimizer and trained using the fit () function. The process of
training includes specifying batch size, number of epochs, and
a validation split. During training, the model’s performance is
evaluated on the test dataset using the evaluate() function, pro-
viding the test accuracy and loss. The test accuracy is recorded
for each epsilon value and stored in the accuracy list. Finally,
implementation is completed by importing matplotlib library
to plot the test accuracy as a function of the privacy budget
(epsilon). The resulting plot helps visualize the relationship
between privacy and model performance. The plotting to test
accuracy as a function of epsilon is done extra to show the
relationship.

Between the code and the changed code, the changes that have
been made in the validation split ratio, the validation split
ratio is set to 0.2 which means that 20 percent of training
data(60000 samples) is used for validation, resulting in 48000
samples for training and 120000 samples for validation. In
the modified code that has been implemented, the validation
split ratio is set to 0.1 which means 10 percent of training
data (54000 samples) is used for validation, resulting in
48600 samples for training and 5400 samples for validation.
The validation split ratio is flexible and can vary depending
on the specific requirements of model training. In the first
implemented code a larger validation set is used which can
provide more reliable validation performance but was taking
more training time. In the modified code, as the validation
set used is smaller, it is faster to train but the validation
performance can vary.

IV. RESULTS

For the first implementation of the raw code, the results
of the output that is trained on 60000 samples, validate on
10000 samples, and epoch = 3 is -

° oot oo optdzeaptindzr, osseloss, netrics: ' accray'|)

motel i ran e, train_laels,
euits=apck,
validation gate st ata, st Lals),
et sfestehsize

000 sanple, validete on L00D semles
| - 37l Sngfsnele - Loy 081 -ty D707 - vl Lo 0,380 - el 0,890
| - 35115 Snsfsanele - Loy 300 - ey D068 - vl Lo 0,363 - el 0050

o = ETH 8038 Lo 3080 - e 0003

This code particularly, generates the accuracy of the model
in terms of training epochs.

Next, for the modified code part, the results of the output that
is trained on 54000 samples, validate on 6000 samples with
epoch = 3 is -

8315 - acc: 0.1086/usr/local/1ib/python3. 10/dist-packages/ke:

1729223184 086 - 2623619936.0000

s4s2634211 508352.0000

oss: 14085 : 0.1376 - val_loss 589.3333 - val_ace: 0.1038

s 533us/sasple - loss: 22368816164.8689 - acc: 0.

- val_loss: 22158566144.0000 -

+ 22325477707.8518 - ac + 23788403626.6667 -

s 530us/sasple - loss:

s 535us/sasple - loss: 25754850446.2222 - acc: 0.1169 - val_loss: 25747603029.3333 - val_acc: 0.1260

loss: 26693800599.7037 - ace: 0.1236 - val_loss: 27582164992.0000 - val_ace:

75482.0741 - ace: 0.1252 - val_loss: 28493617520.0000 -

oss: 27565227946.6667 - val_ace: 0.1280

loss: 27693442421.2593 - ace: 0.1282 - val_loss: 27507461376.0000 - val_ace: 0.1295

27646192725.3333 - ace: 0.1306 - val_loss: 27520639253.3333 -

loss: 27632537268, 1482 - acc: 0.1315 - val_loss: 27754936320.0000 - val_ace: 0.

31 S76us/sasple - loss: 27926709684.1462 - ace: 0.1311 + 21493486213.3333 - val

295 S31us/sasple - loss: 27786534229.3333 - ace: 0.1315 - val_loss: 27343088128.0000 - val ace: 0.,

This code particularly, generates the accuracy of the model in
terms of privacy budgets (epsilon)

A. Discussion

For understanding the relationship between model accuracy
and privacy, the accuracy is then plotted as a function
of the privacy budget epsilon. The relationship between
model accuracy and privacy can be seen below in the figure.

Differentially Private ConvNet on MNIST

0.130 1

0.125 1

0.120 A

0.115 1

Test Accuracy

0.110 A

0.105 1

T T
101 10°
Privacy Budget (epsilon)

v v
103 102

V. CONCLUSION

Differential privacy is a powerful concept that provides
a principled approach to balancing privacy and utility
in machine learning and data analysis. By incorporating
differential privacy techniques into the training process, we
can ensure that the models we build respect the privacy of
the individuals whose data is used. Applying differential
privacy techniques, organizations can responsibly handle and
analyze sensitive data while minimizing the risk of privacy
leakage. By adopting and understanding these techniques, we
can ensure that privacy concerns are adequately addressed

ACKNOWLEDGMENT
REFERENCES

1. “Differential privacy: A survey of results” by Cynthia
Dwork (2008) 2. "The Algorithmic Foundations of Differential
Privacy” by Cynthia Dwork and Aaron Roth (2014) 3. ”A
firm Foundation for private data Analysis” by Cyn- thia
Dwork et al. (2015) 4. Differential Privacy: What is all
the noise about? (https://arxiv.org/pdf/2205.09453v1.pdf)
5. Opacus: User-Friendly Differential Privacy Library in
PyTorch (https://arxiv.org/pdf/2109.12298v4.pdf) 6. Renyi
differential privacy (https://arxiv.org/pdf/1702.07476v3.pdf)

7. Learning to Generate Image Embeddings with
User-level Differential Privacy” by Xu et al. from
Google Research (https://arxiv.org/pdf/2211.10844v1.pdf)
8. Differentially = Private Kernel Inducing Points
(DP-KIP) for Privacy-preserving Data Distillation

(https://arxiv.org/pdf/2301.13389v1.pdf) 9. Deploy Machine
Learning. (https://www.nist.gov/blogs/cybersecurity-
insights/how-deploy-machine-learning-differential-privacy)

v
10?

