
Optimizing CNN Using HPC Tools
Shahrin Rahman

Dept. of Computer Science and Engineering
Brac University

Dhaka, Bangladesh
shahrin.rahman@g.bracu.ac.bd

Abstract—With its vast range of applications, including object
recognition, image classification, and pattern recognition, the
Convolutional Neural Network (CNN) algorithm has brought
about a paradigm shift in the field of computer vision. How-
ever, training massive CNN models requires a lot of computa-
tional power, which can be efficiently handled by using high-
performance computing (HPC) techniques. The CNN method
is optimized in this paper using HPC technologies to increase
its effectiveness. By utilizing multi-core processors, graphics
processing units (GPUs), and parallel computing frameworks
like OpenMPI and CUDA, the proposed approach makes use
of distributed computing and parallel processing techniques to
speed up the training of the CNN model. Using benchmark
datasets, a thorough assessment of the optimization strategy is
carried out, demonstrating considerable improvements in the
CNN algorithm’s performance and training time. Additionally,
a comparison of the suggested approach with alternative opti-
mization strategies is conducted, demonstrating its superiority
in terms of training time and performance. Overall, this study
persuasively demonstrates how HPC technologies may be used
to refine the CNN method, resulting in faster and more accurate
training of large-scale CNN models. The proposed method has the
potential to be more broadly applicable to various deep learning
algorithms, which is significant since it will develop effective and
efficient machine learning models.

Index Terms—Benchmark, HPC, OpenMPI, CUDA, CNN.

I. INTRODUCTION

Many computer vision applications, including image clas-
sification, object recognition, and segmentation, now use
convolutional neural networks (CNNs) as the state-of-the-art
technology. These deep-learning models are effective instru-
ments for automating image processing and have demonstrated
outstanding performance in a variety of applications. How-
ever, training massive CNN models can be computationally
demanding and take a lot of time and resources.

The CNN method has been improved with the use of high-
performance computing (HPC) tools in order to solve this
problem. Deep learning model training is accelerated by the
use of HPC tools like multi-core processors, graphics process-
ing units (GPUs), and parallel computing frameworks. Thus,
by effectively utilizing HPC technologies, CNN model training
time may be greatly decreased, and model performance can be
enhanced.

In this paper, we propose an optimization approach for
the CNN algorithm using HPC tools. The approach utilizes
parallel processing and distributed computing techniques to ac-
celerate the training of large-scale CNN models. We leverage
multi-core processors and GPUs to parallelize the computation

of CNNs and optimize the performance of the algorithm. We
also use parallel computing frameworks such as OpenMPI and
CUDA to efficiently distribute the computation across multiple
nodes in a computing cluster.

Using benchmark datasets, the suggested method is as-
sessed, and the findings reveal considerable improvements in
the CNN algorithm’s training time and accuracy. Additionally,
when we compare our method to other optimization strategies,
the majority of them fall short in terms of accuracy and
training time.

The rest of this essay is structured as follows: in Section
1, we give a quick explanation of the CNN algorithm and
how it is trained. In Section 2, we go over relevant work that
has been done to optimize the CNN method utilizing HPC
technologies and how it is trained. Our suggested optimization
strategy is presented in Section 3, which is followed by
experimental methodologies and result analysis in Section 4.
In Section 5, the concluding section of this paper, we provide
a comprehensive summary of the work and offer an overview
of potential avenues for future research.

II. RELATED WORKS

Unlike other the image research field, less work has been
done using HPC, due to the the substantial computational
requirements and complexities involved. However, in recent
years, there has been a growing recognition of the potential
benefits of leveraging High-Performance Computing (HPC) in
image research.

Parallel programming, thread cooperation, constant memory
and events, texture memory, graphics interoperability, atomics,
streams, CUDA C on multiple GPUs, advanced atomics, and
additional CUDA resources has been discussed in a book
named ”CUDA by Example: An Introduction to General-
Purpose GPU Programming” . This book was written by two
senior members of the CUDA software platform team and
represents programmers on how to use this new technology.
[1].

More recently, Kahira et al. (2021) proposed an approach
that combines both model parallelism and data parallelism to
optimize the CNN algorithm. The authors use a model-driven
analysis as the basis for an Oracle utility that helps pinpoint the
drawbacks and bottlenecks of different parallelism strategies
at scale. Six parallelization techniques, four CNN models, and
several datasets (2D and 3D) are taken into account, using up
to 1024 GPUs, to assess the effectiveness of the oracle. When

compared to empirical results, the results show that the oracle
achieves an average accuracy of about 86.74%, and as high as
97.57% for data parallelism. [2]

Subsequently, several studies have explored the use of GPUs
and other HPC tools to optimize the CNN algorithm. For
instance, Jia et al. (2014) proposed the Caffe deep learning
[3] framework that utilizes both CPUs and GPUs for efficient
training of CNN models. The authors demonstrated that their
framework could achieve high performance on a range of
benchmark datasets.

In another study, Zhang et al. (2016) used HPC tools to
optimize the CNN algorithm for remote sensing image classifi-
cation. [4] The authors utilized a GPU-based computing cluster
and parallel computing frameworks to accelerate the training
process of their model. The results showed that their approach
achieved a significant speedup compared to traditional CPU-
based methods.

A CNN inference micro-benchmark (mbNet) is provided in
another work titled ”A CNN Inference Micro-benchmark for
Performance Analysis and Optimization on GPUs” for per-
formance analysis and optimization. This work also suggests
a simple but effective performance model for adaptive kernel
selection to shorten the time needed for each layer of CNN
inference [5]. The convolutional layer is identified as a crit-
ical component of CNNs, and two mainstream convolutional
strategies, unrolling-based convolution (UNROLL) and direct
convolution (DIRECT), are adopted, implemented, compared,
and analyzed in terms of per-layer convolutional time. Through
the data obtained from the mbNet benchmark, the researchers
build an accurate and interpretable tree-based performance
model. This work provides a comprehensive analysis and
method for decreasing the per-layer inference time in CNNs.
This research focuses on optimizing the inference time of
convolutional neural networks (CNNs) in resource-constrained
Edge-AI devices and embedded systems without sacrificing
accuracy. The findings aid in enhancing CNN inference’s per-
formance on embedded and edge-AI systems with constrained
resources.

III. RESEARCH METHODOLOGY

Data preprocessing, data encoding and embedding, and
deep learning architecture are the three stages of the research
methodology for this work. A brief description of each of these
sections follows:

A. Dataset and preprocessing:
The CIFAR-10 dataset consists of 6000 images per class

in 10 classes, totaling 60000 32x32 color images. 10,000
test photos and 50,000 training images are available. Five
training batches and one test batch, each with 10,000
photos, make up the dataset. An exact 1000 randomly
chosen photos from each class make up the test batch. The
remaining images are distributed across the training batches
in random order; however, certain training batches can have
a disproportionate number of images from a particular class.
The training batches consist of exactly 5,000 photos from

each class combined. [6]. A class distribution chart has been
attached below considering the number of sample and class-

fig.-1:Class Distribution Chart
Two sets of transformations are specified for data prepro-

cessing: transform train for the training set and transform test
for the test set. The steps in transform train are as follows:

• Randomly trim the supplied photos to a 32x32 size with
2 pixel padding.

• Flip the photos horizontally at random.
• Transform the pictures into tensors.
• Utilizing the given mean and standard deviation data,

normalize the tensor values.
The stages of transform test are as follows:
• Transform the pictures into tensors.
• Utilizing the given mean and standard deviation data,

normalize the tensor values.
Finally, these modifications are applied to the CIFAR-10

dataset using PyTorch’s transforms module. A grid of sample
images from different classes of the CIFAR-10 dataset are
displaying below-

fig.-2: 10 classes of the CIFAR-10 dataset

B. Data Encoding and Embedding

Data encoding and embedding techniques are applied to
the CIFAR-10 dataset to prepare the data before training the
CNN model. Below, there is a brief discussion on the specific
techniques used:

Images from ten distinct classes, including cars, birds,
cats, and airplanes, are included in the CIFAR-10 dataset.
These class names are represented numerically by integers

with a range of 0 to 9. The dataset is loaded with the
Torchvision library. It has a parameter transform that applies
data transformations to the input images. As examples of
transformations, transform train and transform test are de-
fined. Compose, which enables the chaining of several data
transformations. In this instance, the transformations entail
transforming the images into tensors. ToTensor after using
the mean and standard deviation information provided for the
CIFAR10 dataset to normalize the pixel values.

No explicit embedding technique was used on this dataset.
However, the data is prepared in a format ideal for training a
CNN model. Through their convolutional layers, CNN models
may automatically learn feature representations. From the in-
put photos, these layers extract pertinent spatial characteristics.
The predefined convolutional layers of the ResNet-18 model,
which is loaded using torchḣubl̇oad, are designed to learn
hierarchical representations of the picture input.

C. Deep learning architecture
Popular deep learning architecture ResNet-18 was created

primarily for image classification tasks. Convolutional layers
are followed by residual blocks in a series. Convolutional
layers, batch normalization layers, ReLU activation functions,
and a global average pooling layer are among the 18 layers
that make up this algorithm. By incorporating skip connections
that improve gradient propagation, the architecture is made to
address the vanishing gradient issue in deep neural networks.
With pretrained=False, which denotes that the model is not
pre-trained, the ResNet-18 model is loaded in this work
using torch.hub.load. Using model.to (device), the model is
subsequently transferred to the designated device (or GPU, if
one is available).

fig.-3 : Proposed Deep Learning model [7]

IV. RESULTS

This section has been divided into 3 subsections named
Evaluation Matrix, Experimental Setup, and Evaluation and
Model Comparison, which have been described below:

A. Evaluation matrix

The frequently used evaluation measures of accuracy, pre-
cision, recall, and F1 score are included in our approaches. In
addition to this, the amount of time needed to execute has been
considered. The equation for the metrics has been displayed
below.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

F1− Score = 2 ∗ (Precision ∗Recall)

(Precision+Recall)

fig.-4:Confusion matrix considering the metrics

B. Experimental Setup

Kaggle was used to download the CIFAR10 dataset. The
dataset consists of 6000 photos per class in 10 classes, totaling
60000 32x32 color images. 10,000 test photos and 50,000
training images are available. Five training batches and one
test batch, each with 10,000 photos, make up the dataset. An
exact 1000 randomly chosen photos from each class make up
the test batch. The remaining images are distributed across the
training batches in random order; however, certain training
batches can have a disproportionate number of images from
a particular class. The training batches consist of exactly
5,000 photos from each class combined. All 10 classes were
preserved in the final model to help with the significant
computational complexity.The items were randomly jumbled
prior to entering the data into the training phase to get rid
of any potential data patterns. The CIFAR-10 dataset is
divided into a training set and a test set by the code. The
model is trained using the training set, and its performance
is assessed using the test set. During the training and
testing phases, respectively, the data loaders (trainloader and
testloader) are utilized to efficiently load the data in batches.
Before starting the training loop, two settings were made:
”torch.set num threads(4)” and ”cudnn.benchmark T̄rue”. By
utilizing hardware-specific optimizations and parallelization
strategies, these parameters are designed to optimize the
execution of the code, which are the primary HPC tools for
this work. These have greatly shortened the computation time.
Finally, after a number of model test runs, hyperparameters
like learning rate, batch size, number of epochs, optimizer, etc.
were optimized. In Table I below, some of these are displayed.

TABLE I: TUNED HYPERPARAMETERS

Hyperparameter Value
Learning Rate 0.1
Batch Size 128
Number of Epochs 350
Optimizer SGD
Momentum 0.2
Weight Decay 5e-4
Scheduler Milestones [150, 250]
Scheduler Gamma 0.1
Data Augmentation RandomCrop(32, padding=2)
Normalization Mean [0.4914, 0.4822, 0.4465]
Normalization Std [0.2023, 0.1994, 0.2010]
Model ResNet-18
Loss Function CrossEntropyLoss

C. Evaluation and model comparison

In this evaluation, we compare the performance of different
configurations and models on the CIFAR-10 dataset. We have
modifies the final code using this [8] notebook. We examined
various metrics such as test accuracy, precision, recall, F1
score, and training time to assess the effectiveness of each
model.

Firstly, we evaluated the performance of the ResNet-18
model without HPC tools. In the configuration with 349
epochs, it achieved a high test accuracy of 85.980% with a
precision of 85.92%, recall of 85.98%, and an F1 score of
85.95%. The training time for this configuration was 12,957.48
seconds. Similarly, in the configuration with 159 epochs, the
model achieved a test accuracy of 85.450% with a precision
of 85.48%, recall of 85.45%, and an F1 score of 85.46%. The
training time for this configuration was 5,992.87 seconds.

Next, we explored the performance of the ResNet-18 model
with HPC tools. In the configuration with 349 epochs, it
achieved a higher test accuracy of 86.210% with a precision
of 86.22%, recall of 86.21%, and an F1 score of 86.22%.
The training time for this configuration was 9,624.68 seconds.
Similarly, in the configuration with 159 epochs, the model
achieved a test accuracy of 85.980% with a precision of
86.00%, recall of 85.98%, and an F1 score of 85.99%. The
training time for this configuration was 4,266.93 seconds.

Additionally, we evaluated the AlexNet model with and
without HPC tools. The configuration with HPC tools and 25
epochs achieved a test accuracy of 87.430% with a precision
of 88.115%, recall of 87.82%, and an F1 score of 86.98%. The
training time for this configuration was 2,859.31 seconds. On
the other hand, the configuration without HPC tools and 25
epochs achieved a test accuracy of 86.02% with a precision of
85.045%, recall of 85.76%, and an F1 score of 84.13%. The
training time for this configuration was 3,994.93 seconds.

Lastly, we assessed the performance of the ResNet-50 model
with and without HPC tools. The configuration with HPC tools
and 20 epochs achieved a test accuracy of 74.89% with a
precision of 73.28%, recall of 73.01%, and an F1 score of
72.79%. The training time for this configuration was 8,571.21
seconds. In comparison, the configuration without HPC tools
and 20 epochs achieved a lower test accuracy of 72.78% with

a precision of 71.07%, recall of 70.84%, and an F1 score of
71.97%. The training time for this configuration was 1,091.33
seconds. A comparison table has been attached here. Table-ll:
model comparison

fig.-5: Table-ll: model comparison

fig.-6:Train vs. Test Accuracy

fig.-7:Train vs. Test Loss
Overall, based on the evaluation, the configuration with

HPC tools and model achieved the highest test accuracy and
performance metrics also showed promising results. On the
other hand, without HPC tools all the models are taking more
computational time and showing low performance comparing

with HPC tools.

V. CONCLUSION

In this paper, the successful use of high-performance com-
puting (HPC) techniques to improve convolutional neural
network (CNN) performance is highlighted. The main points
are drawn after summarizing its primary findings and results.
The effectiveness of training CNNs was significantly improved
because of the use of HPC tools. The training period was
significantly shortened through the use of distributed training
methods and parallel computing, resulting in a quicker con-
vergence and better time-to-solution as well as accuracy. In
this study, convolutional neural networks (CNNs) and their
parallelization techniques were the subject of a thorough
analysis.

Future work in the area of CNN optimization utilizing HPC
technologies could consist of: Examining hybrid parallelism:
By combining model and data parallelism, hybrid parallelism
may present further potential for enhancing CNN scalability
and performance. Future studies can look into how hybrid
parallelism can improve CNN training on HPC systems. Some
of the studies might include-

1) Large-Scale Dataset Optimization: The CIFAR-10
dataset was primarily used in the study to optimize
CNNs. The research can be expanded in the future to
larger datasets like ImageNet to assess how well HPC
tools handle massive data and train more sophisticated
CNN models.

2) Integration with Advanced HPC Techniques: High-
performance computing is a sector that is always de-
veloping new methods and tools. To further boost the
performance and effectiveness of CNN training, fu-
ture research can investigate the integration of cutting-
edge HPC techniques like GPU acceleration, customized
hardware designs, and optimized deep learning frame-
works.

Overall, research on CNN optimization using HPC tools
shows the great potential of utilizing HPC capabilities to
improve CNN training. The results extend large-scale CNN
model training and address practical issues in a variety of
fields, including computer vision, natural language processing,
and biomedical research. They also make a contribution to the
broader field of deep learning and HPC.

ACKNOWLEDGMENT

At first, I would like to thank my creator for giving me the
energy to work with this topic. Next, I would like to thank my
course faculty Meem Arafat Manob Sir for his professional,
kind and helpful behavior and lastly, I would like to thank
Joyanta J. Mondal Sir for helping , inspiring and introducing
me with the topic.

REFERENCES

[1] J. Sanders, E. Kandrot, and J. J. Dongarra, Cuda by example: An intro-
duction to general-purpose GPU programming. Addison-Wesley/Pearson
Education, 2015.

[2] A. N. Kahira, T. T. Nguyen, L. B. Gomez, R. Takano, R. M.
Badia, and M. Wahib, “An oracle for guiding large-scale model/hybrid
parallel training of convolutional neural networks,” in Proceedings
of the 30th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 161–173. [Online].
Available: https://doi.org/10.1145/3431379.3460644

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” 2014.

[4] X. Li, G. Zhang, H. Huang, Z. Wang, and W. Zheng, “Performance
analysis of gpu-based convolutional neural networks,” 08 2016, pp. 67–
76.

[5] J.-G. Park, Z. Nazir, B. Kalmakhanbet, and S. Sabyrov, “A cnn inference
micro-benchmark for performance analysis and optimization on gpus,”
10 2022, pp. 486–491.

[6]
[7] A. Ebrahimi, S. Luo, and R. Chiong, “Introducing transfer leaming to

3d resnet-18 for alzheimer’s disease detection on mri images,” 2020 35th
International Conference on Image and Vision Computing New Zealand
(IVCNZ), pp. 1–6, 2020.

[8] Ayushnitb, “Cifar10 custom+resnet cnn pytorch (gt; 97%
acc),” Apr 2023. [Online]. Available: https://www.kaggle.
com/code/ayushnitb/cifar10-custom-resnet-cnn-pytorch-97-acc#3.
-Model-Performance-Report-&-Error-Analysis

