
Behavioral Cloning 2.0: Building upon Existing
Work

Swapnil Ghosh
School of Data and Sciences

Brac University
Dhaka, Bangladesh

swapnil.ghosh@g.bracu.ac.bd

Abstract—Cloning someone’s behavior involves physically
making an exact copy of that person’s actions. The goal is to
use training data from the driver to teach a Convolution Neural
Network (CNN) to drive in a manner that is analogous to that
of the driver. NVIDIA published a study in which they trained
CNN to transfer raw pixels from a single front-facing camera
straight to steering instructions. This was accomplished with just
one camera. Surprisingly, the findings were quite impressive, as
the automobile was able to learn how to drive in traffic on local
roads with or without lane markings, as well as on highways,
with a minimal quantity of training data. Udacity will give us
with a simulator, and we will utilize it. The front of the simulation
vehicle is fitted with three cameras, one of which records video
while the other two record the angle of the steering wheel in
relation to the central camera. We will train the model in the
same way as described in the paper, but with some modifications
in order to make the model better.

Index Terms—Convolution Neural Network (CNN), NVIDIA,
Udacity

I. INTRODUCTION

An end-to-end learning system for self-driving cars was
detailed in a recent research [1], in which a convolutional
neural network (CNN) was trained to output steering angles
given input pictures of the road ahead. This network is
currently referred to as PilotNet. Images captured by a front-
facing camera installed in a vehicle used for data collection
were combined with the time-synchronized steering angle
collected from a human driver to create the training data.
The idea behind PilotNet was to do away with the need of
manually coding rules and instead develop a system that can
pick up new information simply by watching its surroundings.
The first findings were positive; nevertheless, a significant
amount of development work need to be done before such a
system can drive itself without the assistance of a person. The
simulator that Udacity gives us allows us to test and execute
the model more effectively. I have made some adjustments
to the preexisting PilotNet model in order to achieve some
progress in the evaluation process. Here’s the PilotNet 1 model
described in the paper [1]

II. RELATED WORKS

The 2016 article ”End to End Learning for Self-Driving
Cars” by Mariusz Bojarski et al. [1] introduces a novel
method for training a convolutional neural network (CNN)
to translate raw pixels from a single front-facing camera into

Fig. 1. CNN architecture. The network has about 27 million connections and
250 thousand parameters.

driving commands without using human-designed features or
predetermined rules. CNNs learn to drive on local roads with
or without lane markings, freeways, and parking lots using an
end-to-end method. Research suggests the model can accom-
plish this with minimal human driver data. The authors want to
avoid ”if, then, else” rules based on lane markers, guard rails,
and other vehicles. To train the system, the authors directly
link raw visual data with driving directions. Torch 7 and



NVIDIA DevBox trained their model. NVIDIA DRIVETM
PX routed. 30 FPS. Scientists use mean squared error to teach
the network to steer like humans. Nine layers—a normalization
layer, five convolutional layers, and three fully connected
layers—make up the network. Fully connected layers guide,
while convolutional layers gather input image information. The
authors provided the network input image YUV planes. The
first three convolutional layers are strided, but the latter two are
not. The article’s vehicle control instructions are photo-based.
Their end-to-end technique worked effectively in experiments.
The machine learnt to drive in low-light, hazy, uneven, lane-
marked conditions. Their method is scalable for large-scale
application since it requires less human-sourced training data.
”End to End Learning for Self-Driving Cars” trains a CNN
to turn raw pixels from a single front-facing camera into
driving instructions. Method works. The paper provides a
way for machines to drive without rules or human-designed
features. The author’s experiments reveal that their large-scale
deployment approach is practicable and scalable, offering a
potential path for self-driving car research.

”Playing Minecraft using Behavioural Cloning” [2] The
MineRL 2019 competition required sample-efficient agents to
play Minecraft using a dataset of real-world gaming and a
fixed number of steps. Predicting human behavior through be-
havioural cloning solved this challenge. The authors observed
that a simple algorithm might perform differently depending
on when training ends. This article describes the authors’
BC-based MineRL 2019 proposal and associated issues. The
agent’s performance variation during training, the effect of
uniformly sampling the training dataset, the use of data aug-
mentation to improve performance, and the agent’s potential
bias toward actions overrepresented in the dataset. The work
highlights the unreliability of behavioural cloning and the
necessity to report results variants, like RL research. Agents
predict behavior via deep neural networks. Residual networks
and direct features process image observations. Alternatives
are sampled from each action’s softmax activation probability.
ReLU activation follows FixUp layer initialization. The model
does not use LSTM or earlier frames. Since direct qualities
affect action likelihood, inventory counts may reveal activities.
Memory isn’t needed to finish the challenge.

In ”Model-based Behavioral Cloning with Future Image
Similarity Learning,” the authors Alan Wu et al. [3] provide
a framework for visual imitation learning that allows robot
action rules to be learned simply from expert examples without
the need of actual robot trials. In a real-world setting, robot
exploration and on-policy experimentation might often be
costly or risky. This issue is solved using a novel method
that enables generalised action cloning using future picture
similarity and learns a future scene prediction model merely
from a library of expert trajectories made up of unlabeled
sample movies and actions. The robot gains the ability to
foresee outcomes of actions visually. To choose the appropriate
course of action, it compares the anticipated future picture
to an expert image. The authors describe how we use future
images for robot learning using a stochastic action-conditioned

convolutional autoencoder. They tested models against several
baseline techniques utilising a ground mobility robot in both
simulated and actual situations, with and without obstacles.The
model learns to produce a prior, zt, which changes depending
on the input sequence, in addition to learning to input the
current picture and action. The representation from before
the future picture prediction is further concatenated with this.
The prior is used to provide crisper visuals and improved
modelling in unpredictable contexts. imagined future scenes
doing various activities in simulations and real-world labs.
Deterministic model with linear and convolutional state repre-
sentation, top two rows of each environment. Stochastic model
with linear and convolutional state representation, respectively,
can be seen in the bottom two rows. Each row’s central picture
represents the current image, with neighbouring images to the
left and right rotating by -5° and +5°, respectively. It can
provide plausible pictures to train a critic V hat, which aids
in choosing the best course of action, using the stochastic
future image predictor. In the actual world and in simulated
scenarios, the authors tested their critic model and future
image prediction model.

By leveraging human demos to train a deep network,
Kanervisto, Pussinen, and Hautamaki’s paper [4] explores the
viability of end-to-end behavioral cloning for video game
playing. Twelve games are included in the study, including six
modern games that were launched after 2010. The research
demonstrates that while the agents cannot perform as well
as humans, they can grasp basic dynamics and rules. The
influence of human reaction delays on data quality is also high-
lighted by the authors, along with the significance of training
data quantity and quality. Modern video games are said to
use ViControl, a multi-platform application for recording and
playing games, as a kind of behavioral cloning. The article
emphasizes that game-specific engineering is still required for
successful results despite behavioral cloning’s benefits, such
as not needing complex game adaptations and sparse training
sessions. The neural network model is constructed using a
convolutional neural network with three convolutional layers,
one fully connected layer, and ReLU activations. It was trained
with the Adam optimizer using a learning rate of 0.001 and
an L2-normalization weight of 10-5 until the training loss
did not decrease. The network’s probability estimate is used
to sample the final actions during evaluation, outperforming
deterministically selecting the path of action with the highest
likelihood. Overall, the article offers insightful information
on the possibilities and difficulties of end-to-end behavioral
cloning for playing video games.

This research ”Behavioral Cloning from Observation” [5]
suggests a two-phase autonomous imitation learning method
dubbed behavioural cloning from observation (BCO). In order
to build a model, the agent must first gain experience in a
self-supervised way. The model is then used to learn a certain
task by watching an expert accomplish it without knowing
the precise steps they took. The state-of-the-art generative
adversarial imitation learning (GAIL) technique is compared
to other imitation learning approaches, including the BCO



approach, and it shows comparable task performance in a
variety of simulation domains while displaying increased
learning speed once expert trajectories are made available.
The BCO approach seeks to increase performance in two key
areas for autonomous agents: learning from observation alone
and learning rapidly. The post-demonstration environment
interaction in the modified version of the Behavioral Cloning
Optimization (BCO) method described in the article enhances
the learned model and imitation policy. After implementing
the imitation policy in the environment for a brief period of
time, the updated algorithm, known as BCO(alpha), changes
the model and imitation policy using freshly observed state-
action sequences. The number of contacts with the post-
demonstration environment at each iteration is determined by
the value of alpha, the user-specified parameter. It is possible to
compute the total number of post-demonstration interactions
needed by BCO(alpha) as a function of and the quantity of
demos. The model may enhance the learnt imitation policy
by appropriately assessing the demonstrator’s actions when a
nonzero alpha is used. By setting both alpha and T, the model-
improvement iterations may be stopped early if the budget for
post-demonstration interactions is fixed.

In the research ”Enhanced Behavioral Cloning Based self-
driving Car Using Transfer Learning” [6] an unique end-to-
end based VGG16 technique is provided, which is adjusted
to forecast the steering angle based on the environmental
limitations. This approach is intended to demonstrate the
significance of transfer learning approach in the context of
self-driving automobiles. The suggested method is then put up
against NVIDIA and its pruned variants (which were reduced
in parameter count by 22.2 percent and 33.85 percent, respec-
tively, using a 1 x 1 filter). The training time is much shorter
for the pruned architectures than for the baseline architecture
since there are fewer parameters in them. Although just a
portion of the network is taught for the pre-trained model,
a considerable amount of computational time is saved with-
out sacrificing performance when using the transfer learning
technique. Transfer learning is a more effective approach to
reduce training time when the tasks are comparable since the
weights of the first few layers are identical and the latter layers
include information that is relevant to the job. The VGG16
with transfer learning architecture surpassed other techniques
with quicker convergence, according to experimental data.

The research ”Augmented Behavioral Cloning from Obser-
vation” [7] describes that in order to increase the efficiency of
Imitation from Observation (IfO) in training an agent to imitate
the behaviour of an expert, the study suggests a novel method
termed Augmented Behavioral Cloning from Observations
(ABCO). The suggested approach controls the data input
into the inverse dynamics model, eliminating undesired local
minima, by using attention models and a sampling mechanism.
In order to increase sample efficiency and the calibre of the
imitation policy model, the ABCO technique combines the
inverse dynamics model with the policy model. The results
demonstrate that, using either low-dimensional state spaces
or raw photos as input, ABCO outperforms conventional

behaviour cloning by using attention processes and a sampling
method. The research demonstrates the superiority of the
suggested methodology over state-of-the-art approaches using
technical words like imitation learning, behavioural cloning,
learning from demonstration, and deep learning.

”Robust Behavioral Cloning for Autonomous Vehicles using
End-to-End Imitation Learning” by Tanmay Vilas Samak,
Chinmay Vilas Samak, and Sivanathan Kandhasamy [8]pro-
poses a pipeline for powerful behavioral cloning of a human
driver. Data gathering, balancing, augmentation, preprocess-
ing, and neural network training precede ego vehicle model
deployment. The suggested approach provides longitudinal
control signals based on the anticipated steering angle and
other parameters. The research compares the recommended
solution to the latest NVIDIA implementation and demon-
strates its dependability. Trials show that the pipeline can
clone three driving habits. The paper suggests creating ex-
plicit hardware or sim2real implementations, using a range of
datasets, exploring various techniques to tackle generalization
failure, and standardizing trials and assessment metrics for fu-
ture research. The authors’ lightweight, end-to-end behavioral
cloning process is a major addition to autonomous driving. To
increase model resilience, the research emphasizes choosing
and balancing datasets, data augmentation, and preprocess-
ing. The pipeline’s connected control rules suggest it may
outperform standard control approaches. The study proposes
cloning human driving behavior in autonomous cars, and its
suggestions for further research will progress the subject.

Felipe Codevilla et al.’s [9] ”Exploring the Limitations of
Behavior Cloning for Autonomous Driving” discusses behav-
ior cloning’s limitations for autonomous driving. The study
discusses behavior cloning’s present limits and state-of-the-art.
Behavior cloning is attractive for autonomous driving because
it can learn complicated driving strategies from expert demon-
strations without engineering. Distribution shift, covariate
shift, and dataset bias restrict it. The authors use the CARLA
simulator to test behavior clone models in different lighting
and weather conditions, additional objects, and road layouts to
highlight these limits. Data augmentation, domain adaptability,
and diverse data sources are suggested to overcome behavior
cloning’s drawbacks. They quantify how well these methods
handle behavior cloning’s limitations. The article finds that
behavior cloning is promise for autonomous driving but has
limits that must be addressed for real-world implementation.
The authors recommend creating more robust and dependable
autonomous driving techniques that can manage real-world
variable and complexity.

”Driver behavioral cloning using deep learning” [10]
presents a deep learning-based strategy for educating self-
driving cars. conduct cloning—learning a driver’s conduct
through demonstrations and applying it to new situations—is
the writers’ emphasis. The authors describe their model’s
architecture, which is built on a deep convolutional neural
network (CNN) trained to anticipate human driver behavior
from visual input. They then cover behavior copying data
collection and processing problems such driver behavior vari-



ability and data imbalances. The authors suggest mimicking
lighting, weather, and other environmental elements to enhance
training data to solve these issues. They also detail balancing
data to prevent the model from overfitting to any driving style
or environment. The authors test their approach using real-
world driving video and compare it to baseline techniques.
Their strategy exceeds baseline approaches in accuracy and
generalization to new contexts. The research introduces a
unique deep learning technique to behavior cloning and dis-
cusses data collection and processing problems. The suggested
strategy shows promise for self-driving car development.

The study ”Behavior Cloning for Autonomous Driving
using Convolutional Neural Networks” by Wael Farag and
Zakaria Saleh [11] offers a CNN-based safe steering con-
troller named ”BCNet” for autonomous driving. A front-
facing camera and steering orders from an experienced driver
operating in traffic and urban roads provide training data.
The obtained data trains the suggested CNN for behavioral
cloning. After numerous experiments, the BCNet features a
deep seventeen-layer design. Adam’s optimization technique
trains BCNet. The study describes the creation, training, and
image processing pipeline. After numerous simulations, the
suggested technique clones the driving behavior in the training
data set. CNN-based lane and road following may be learned
without human dissection into road or lane marker recognition,
semantic abstraction, route planning, and control. One or two
tracks of training data are enough to teach the automobile to
drive safely on several tracks. Steering alone trains the CNN to
recognize road elements. The authors examine the approach’s
drawbacks and suggest improvements for future study. This
application requires an extensive training data pre-processing
pipeline. This application requires data quality above quantity,
as the authors underline. This approach advances completely
autonomous autos. The article makes a strong argument for
CNN behavior cloning in autonomous driving.

The research ”Data Augmented Deep Behavioral Cloning
for Urban Traffic Control Operations Under a Parallel Learn-
ing Framework” [12] presents a data augmented deep behav-
ioral cloning (DADBC) approach to mimic traffic engineers’
time-consuming and expert problem-solving abilities in traffic
signal control (TSC) operations. The parallel learning (PL)
framework uses machine learning to solve complicated system
decision-making challenges. DADBC employs a generative
adversarial network (GAN) and the deep behavioral cloning
(DBC) model to learn traffic engineers’ control techniques.
The authors stress the need for a software-aided tool that
can learn from human specialists to speed up traffic control
and management in vast metropolitan traffic networks. They
recommend a data-driven approach over analytical modeling to
reflect human knowledge’s stochastic and uncertainty features
for traffic management operations. The study briefly explains
the generative adversarial model and deep behavioral cloning
approach and summarizes TSC system research. Using ac-
tual manipulation data from Hangzhou, China, the authors
demonstrate that the suggested technique can emulate com-
plicated human behaviors in intervening traffic signal control

operations to increase urban traffic efficiency. DADBC allows
the control system to deliver timely and high-performance
control methods. The report finishes with further research.
The research proposes a unique method to mimic traffic
engineers’ problem-solving abilities in TSC operations and
improve traffic control systems in big metropolitan traffic
networks. The paper’s data-driven methodology and machine
learning in a parallel learning framework are important. The
validation findings imply that the suggested solution might
overcome TSC operating issues.

”Behavioral Cloning for Lateral Motion Control of Au-
tonomous Vehicles using Deep Learning” by Sharma et al.
[13] covers the issues of constructing an end-to-end model for
autonomous driving with an emphasis on autonomous lateral
control. The authors emphasize autonomous lateral control
in self-driving automobiles and the limits of standard image
processing. A convolutional neural network outputs steering
angles from road photos in their end-to-end learning tech-
nique. Path planning and following algorithms are unnecessary
since the model is taught to match human driving behavior.
The authors train a deep neural network on 10 hours of
driving data from two tracks using the TORCS simulation
environment to prove their method works. With four hours of
data from one track, the end-to-end model maintained lanes
and completed laps on multiple courses. End-to-end learning
and behavioral cloning may drive independently in new and
unforeseen settings. The model guided the car successfully
89.02 percent of the time on single-lane unfamiliar tracks and
96.62 percent on multilane tracks. The work analyzes data
collecting and training systems and installs all components
needed to train an end-to-end model, adding to the literature.
The writers explore training issues and remedies. The article
solely covered lateral control and did not address longitudinal
control. They advise training the network using vehicle speed
and steering angles for autonomous longitudinal control. The
article sheds light on deep learning and neural network training
software for autonomous driving. The study shows that end-to-
end learning and behavioral cloning can drive autonomously
in new and unknown scenarios, and its detailed analysis of
data acquisition and training systems is useful for autonomous
driving researchers and engineers.

Nelson Fernandez Pinto and Thomas Gilles’ [14] ”Enhanced
Behavioral Cloning with Environmental Losses for Self-
Driving Vehicles” covers safe path planning. While trained
route planners may mimic human driving behavior and give
quick inference, they cannot handle complicated driving cir-
cumstances by simply imitating expert observations. Predic-
tions beyond drivable zones might also be harmful. Social
loss and Road loss loss functions describe dangerous social
interactions in route planning. These losses repel non-drivable
regions. Backpropagation reduces training cost for predictions
around these locations. This approach adds environment input
to supervised learning. On a large-scale urban driving dataset,
the authors showed that the agent learns to drive like humans
while improving safety measures. The study emphasizes safe
route planning in self-driving cars, especially in complex and



dynamic metropolitan contexts. The authors highlight that au-
tonomous automobile technology faces substantial obstacles,
and self-driving perception and planning systems must be
reliable. In multi-agent urban situations, model-based planners
are generally suboptimal. Due of their short inference time
and ability to imitate nuanced human driving behavior, learned
planners—particularly behavioral cloning—have garnered at-
tention. The research finds that their suggested behavioral
cloning strategy reduces collisions and overlaps with non-
drivable zones. Inference has persistent impacts without risky
driving teaching instances. This article contributes to safe route
planning in self-driving cars and calls for further investigation.

”A Deep Network System for Simulated Autonomous Driv-
ing Using Behavioral Cloning” by Patachi, Leon, and Logofătu
[15] describes a technique for training a convolutional neural
network (CNN) to learn vehicle behavior using simulator data.
The authors show that the CNN can learn to drive on a de-
fined strip road with little driving experience through suitable
driving simulations in a game. The network dynamically learns
how to represent processing stages including road feature iden-
tification, speed, and track location. The study explores testing
driving assistance functions like auto emergency braking and
cruise control using virtual simulation platforms. With the rush
to deploy completely driverless automobiles, these platforms
are increasing appeal, the authors say. They explore simulators
like CarMaker, Udacity-self driving car, and CARLA that can
simulate automobiles, traffic signs, pedestrians, sensors, and
weather. The writers also discuss behavioral cloning, which
transfers human talents to a computer program. They explain
how a learning system may utilize a log of human subject
task records to imitate the desired behavior. This method
may be used to build complex automated control systems
that traditional control theory cannot handle. Data collection
and processing, convolutional neural network design, and
activation functions are summarized in the paper’s conclu-
sion. The exponential linear unit (ELU) activation function
improves learning. They show experimental data and discuss
autonomous driving research.

III. RESEARCH METHODOLOGY

A. Data Collection:

The simulator features two lanes, the first of which is rather
straightforward with fewer, smaller bends, and the other of
which is challenging with many, winding turns and steep
slopes. Training data from both tracks will be used. We’ll
maintain lane center while driving in both lanes. Each of us
will do 3 laps in the car. We’ll drive one lap in each of the
lanes while attempting to drift to the outside and keep the lane
in the middle. This will provide us with training data for our
model adjustments.

B. Data Augmentation:

Randomly flip several photos and set the steering angle
to -steering angle. Randomly move the graphics horizontally
and vertically and modify the steering angle. Road shadows

Fig. 2. Original Image vs Augmented Images

include trees, posts, etc. We’ll shadow training photos. Ran-
domly brighten photos. Some training picture 2 outputs after
augmentations are below.

C. Pre-Processing:

The training pictures are of size 160*320*3, whereas the
input images are 66*200*3. Additionally, we must transform
input photos from RGB to YUV color format. Additionally,
the presence of mountains or a vehicle bonnet at the bottom
of the picture is not necessary for training purposes. So, from
the input photos, we will crop the top 40 and bottom 20 pixel
rows. As part of the pre-processing, we will also scale the
cropped picture to 66*200*3 and change the color space to
YUV.

D. Model Architecture:

The NVIDIA paper [1] on mapping raw images to driving
signals inspired my Neural Network Architecture. 9 layers—a
normalization layer, 5 convolution layers, and 3 fully con-
nected layers—make up the network. Normalization layer
normalizes image. Normalization in the network may be
changed with the network design and expedited with GPU
processing. 5 convolution layers extract picture features. The
first three convolutions are strided with 2x2 strides and a 5x5



Fig. 3. Training result

kernel. Non-strided 3x3 kernel convolutions provide the final
two convolution layers. Three full-connected layers follow the
convolution layers to provide the output steering value. Keras
and Tensorflow power the model. Adam Optimizer is used
to optimize the learning. This optimizer automatically adjusts
learning rate during training.

E. Tweaking the Model:

Initially the model was under-fitting and the car showed
a bias towards straight driving, failing to turn at curves. By
adding recovery laps, more data samples using data augmen-
tation, a drive on Track2, the bias towards straight drive
was eliminated. The vehicle was making erroneous turns or
straying into the track’s borders. I noticed that the training
losses were far lower than the validation losses. I determined
that over-fitting was the cause of the issue. By including
dropout layers after all layers with a drop probability of
0.5, this was reduced to a minimum. I attempted a model
with ”relu” activation instead of ”elu.” Dropout after Flatten
layer regularized. ”Relu” non-linearity after dense layer. Model
training took 15 epochs. Here is the result 3.

IV. RESULTS

I utilized the already existing model, and I used the already
existing dataset, and I obtained a result 4 where we can see
that Track2 has a vehicle that crashes at the beginning, and it
is unable to recover. This takes place on every run. On Track1,
though, the vehicle does not have any issues. After making a
few adjustments to the previously developed model, I trained it
using a dataset that I had constructed myself. After putting the
model through its paces, I was able to get a result 5 showing
that the automobile performs well on both Track 1 and Track
2.

Fig. 4. Simulation run on the existing model and dataset: Crashed Car

Fig. 5. Simulation run on the tweaked model and new created dataset: Car
not Crashed

V. FUTURE WORK

Although the model has made tremendous strides in its
capacity to detect and react to various driving conditions, it
is still not entirely capable of distinguishing between people
and other road users or animals. This is mainly because
situations involving live things are not often included in the
datasets used to train these vehicles. However, the model’s
capacity to distinguish between people and other animals on
the road would significantly advance the field. If the model
is able to recognize and react to live things on the road, the
safety of bikers, pedestrians, and cars might all be significantly
increased.

VI. CONCLUSION

This Udacity project is very difficult for those who are just
starting out in the field of machine learning. A deep learning
model that can drive independently on a simulated track was
built by utilizing data taken from human behavior. This data
was used to train the model. The model was able to learn by
replicating human behavior, and it was able to generalize its
response to a new test track. The model consists of five layers
of convolution and three additional layers that are completely
coupled. The model now simply controls the angle at which
the steering wheel is turned, but it may be expanded to include
control the throttle and the brake.

ACKNOWLEDGMENT

Our faculty, Meem Arafat Manab sir and Joyanta J. Monda
sir, deserve my sincere gratitude. My research’s direction and
rigor and quality were greatly influenced by their advice,
knowledge, and support.

REFERENCES

[1] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, “End to end learning for self-driving cars,” 2016.



[2] A. Kanervisto, J. Karttunen, and V. Hautamäki, “Playing minecraft with
behavioural cloning,” 2020.

[3] A. Wu, A. Piergiovanni, and M. S. Ryoo, “Model-based behavioral
cloning with future image similarity learning,” 2019.

[4] A. Kanervisto, J. Pussinen, and V. Hautamäki, “Benchmarking end-to-
end behavioural cloning on video games,” 2020.

[5] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observa-
tion,” 2018.

[6] U. Sumanth, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Enhanced
behavioral cloning-based self-driving car using transfer learning,” in
Data Management, Analytics and Innovation: Proceedings of ICDMAI
2021, Volume 2. Springer, 2021, pp. 185–198.

[7] J. Monteiro, N. Gavenski, R. Granada, F. Meneguzzi, and R. Barros,
“Augmented behavioral cloning from observation,” 2020.

[8] T. V. Samak, C. V. Samak, and S. Kandhasamy, “Robust behavioral
cloning for autonomous vehicles using end-to-end imitation learning,”
SAE International Journal of Connected and Automated Vehicles,
vol. 4, no. 3, aug 2021. [Online]. Available: https://doi.org/10.4271%
2F12-04-03-0023

[9] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the
limitations of behavior cloning for autonomous driving,” 2019.

[10] J. Kocić, N. Jovičić, and V. Drndarević, “Driver behavioral cloning
using deep learning,” in 2018 17th International Symposium INFOTEH-
JAHORINA (INFOTEH), 2018, pp. 1–5.

[11] W. Farag and Z. Saleh, “Behavior cloning for autonomous driving using
convolutional neural networks,” in 2018 International Conference on In-
novation and Intelligence for Informatics, Computing, and Technologies
(3ICT), 2018, pp. 1–7.

[12] X. Li, P. Ye, J. Jin, F. Zhu, and F.-Y. Wang, “Data augmented deep
behavioral cloning for urban traffic control operations under a parallel
learning framework,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 5128–5137, 2022.

[13] S. Sharma, G. Tewolde, and J. Kwon, “Behavioral cloning for lat-
eral motion control of autonomous vehicles using deep learning,” in
2018 IEEE International Conference on Electro/Information Technology
(EIT), 2018, pp. 0228–0233.

[14] N. F. Pinto and T. Gilles, “Enhanced behavioral cloning with environ-
mental losses for self-driving vehicles,” 2022.

[15] A.-I. Patachi, F. Leon, and D. Logofătu, A Deep Network System for
Simulated Autonomous Driving Using Behavioral Cloning, 05 2019, pp.
235–245.

Appendix
Behavioral Cloning: Autonomous Car Simulator

How to Simulate:
Step 1:
Available Game Builds (Precompiled builds of the simula-

tor) Term 1 Instructions: Download the zip file, extract it and
run the executable file.

Version 2, 2/07/17
Linux Mac Windows
Version 1, 12/09/16
Linux Mac Windows 32 (Windows 64)
Step 2 : Download the files from the provided link and

extract it in an empty folder. Link: Drive or github
Step 3: Open Command Prompt on the folder. 6
Step 4: Type: ”udacity\Scripts\activate” and press enter.

This will activate the virtual environment.7
Step 5: Then open the Udacity Simulator and run the

simulator. When the simulator is open select a map and click
the ”Autonomous Driving” option.8

Step 6: Lastly, on the cmd type: ”python drive.py” and press
enter. You will see the server gets Connected and the car starts
to drive autonomously.9

Fig. 6. Command Prompt

Fig. 7. Virtual Environment

Fig. 8. Simulator

https://doi.org/10.4271%2F12-04-03-0023
https://doi.org/10.4271%2F12-04-03-0023
https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/Term1-Sim/term1-simulator-linux.zip
https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/Term1-Sim/term1-simulator-mac.zip (Not supported by apple silicone chips)
https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/Term1-Sim/term1-simulator-windows.zip
https://d17h27t6h515a5.cloudfront.net/topher/2016/November/5831f0f7_simulator-linux/simulator-linux.zip
https://d17h27t6h515a5.cloudfront.net/topher/2016/November/5831f290_simulator-macos/simulator-macos.zip
https://d17h27t6h515a5.cloudfront.net/topher/2016/November/5831f4b6_simulator-windows-32/simulator-windows-32.zip
https://d17h27t6h515a5.cloudfront.net/topher/2016/November/5831f3a4_simulator-windows-64/simulator-windows-64.zip
https://drive.google.com/drive/folders/1lmkLeYHFlqgkAmxEHmLuoSLNWqRHvHVC?usp=sharing
https://github.com/swapnilGhosh007/necessary_things


Fig. 9. Drive


	Introduction
	Related Works
	Research Methodology
	Data Collection:
	Data Augmentation:
	Pre-Processing:
	Model Architecture:
	Tweaking the Model:

	Results
	Future Work
	Conclusion
	References

