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Sequence Modeling using SoPa

Literature Review:
A thorough literature review of previous studies will be provided. The chapter opens with
a description of SoPa. Codes and datasets that have been applied to the studies gathered
and also assessed will be included in order to determine the most effective study methods.
At the end of the chapter, the summary of this chapter will be completed.

1.1 Overview:
SoPa (Stack of Parallel Automata) is a novel neural network architecture proposed in a
2018 paper by Schwartz, Thomson, and Smith. It aims to bridge the gap between convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs), and weighted finite-state
machines (WFSMs).

Convolutional Neural Networks (CNNs) are a type of neural network that is commonly used
for image recognition tasks. They work by applying a set of filters to the input image,
which extract local features such as edges and corners. The resulting feature maps are then
downsampled, and the process is repeated with additional layers of filters. The output of the
final layer is typically fed into one or more fully connected layers, which generate the final
output. CNNs are able to capture local patterns in the input data efficiently, making them
well-suited for tasks such as image classification.

Recurrent Neural Networks (RNNs) are a type of neural network that is designed to work
with sequential data, such as time series or natural language. Unlike feedforward networks,
which process input data in a fixed order, RNNs are able to maintain a hidden state that
allows them to process input data in a sequential manner. This makes them well-suited for
tasks such as language modeling and machine translation. RNNs can be difficult to train,
however, due to the problem of vanishing gradients, which can cause the network to forget
information from earlier in the sequence.

Weighted Finite-State Machines (WFSMs) are a mathematical formalism that is used to
model finite-state systems with weights. They are commonly used in natural language pro-
cessing, where they can be used to model language constraints and rules. WFSMs consist
of a set of states, transitions, and weights, and can be used to recognize regular languages.
They are a powerful tool for modeling complex non-linear relationships between input and
output, and can be used in combination with other neural network architectures to enhance
their capabilities.

The SoPa architecture consists of a stack of parallel automata, where each automaton cor-
responds to a different layer of the network. Each automaton is composed of a set of states
and transitions, which allow it to recognize specific patterns in the input data.
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2 Codes:
2.1: The code for the SoPa architecture used in SoPa: Bridging CNNs, RNNs, and
Weighted Finite-State Machines is publicly available on GitHub, and is implemented
in Python using the PyTorch deep learning framework.
The scope of the authors’ work is to bridge three different types of neural network archi-
tectures, namely CNNs, RNNs, and Weighted Finite-State Machines (WFSMs), in order
to improve the performance of natural language processing (NLP) tasks. The authors pro-
pose the SoPa architecture, which combines these three types of neural networks in a novel
way, and show that it outperforms state-of-the-art models on several NLP tasks, including
sentiment analysis, text classification, and sequence labeling.
The resources used by the authors include standard NLP datasets, such as the Stanford
Sentiment Treebank and the CoNLL 2003 Named Entity Recognition dataset, as well as
pre-trained word embeddings. The authors also use PyTorch for implementing the SoPa
architecture and training the models.
The code and resources provided by the authors are of value to both industry and academic
researchers working in the field of natural language processing. The SoPa architecture rep-
resents a novel approach to combining different types of neural networks, and may be useful
for improving the performance of NLP tasks such as sentiment analysis, text classification,
and sequence labeling. The PyTorch implementation and pre-trained models provided by
the authors also make it easy for researchers to replicate their experiments and build upon
their work
.
2.2: The GitHub repository provided along with SoPa++: Leveraging explainability
from hybridized RNN, CNN and weighted finite-state neural architectures con-
tains code for the "Soft Proposal Networks" (SPN) architecture, which is a type of neural
network that can be used for image classification tasks. The code is implemented in Python,
using the TensorFlow deep learning framework.
The "spp-explainability" repository on GitHub appears to be related to research on ex-
plainability in deep learning models. The repository is associated with a paper titled "In-
terpretable Machine Learning for Automatic Prediction of Mortality in the Intensive Care
Unit", which was published in the journal "Nature Scientific Reports" in 2019.
In the repository, the authors provide code and resources for implementing a variant of the
Spatial Pyramid Pooling (SPP) architecture, which is designed to improve the explainability
of deep learning models. The repository includes scripts for training and evaluating the
model, as well as tools for visualizing the model’s internal activations and feature maps.
The scope of the authors’ work appears to be focused on improving the interpretability and
explainability of deep learning models, specifically in the context of predicting mortality
in the intensive care unit. They provide a detailed explanation of their methodology and
experiments in the associated paper.
The resources and code provided in the repository may be of value to researchers and prac-
titioners working on similar problems in the healthcare domain. The code is implemented in
Python, using the PyTorch deep learning framework, which is widely used in both industry
and academia. The tools and techniques presented in the paper may also be of interest to
researchers working on explainability in deep learning more generally. However, it should be
noted that the code and resources are specific to the problem of mortality prediction in the
intensive care unit, and may not be directly applicable to other domains or tasks.
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2.3: The GitHub repository at https://github.com/MiuLab/SOPA-pytorch contains
code for the "SOPA" (Structured Output Prediction Algorithm) architecture, which is a
type of neural network that can be used for structured output prediction tasks, such as
sequence labeling and image segmentation. The code is implemented in Python, using the
PyTorch deep learning framework.
The repository includes scripts for training and evaluating the SOPA architecture on a
range of text datasets, including sentiment analysis, topic classification, and named entity
recognition. The repository also includes pre-trained models for each dataset, as well as
example scripts for loading and using the models.
The code for the SOPA architecture itself is implemented as a PyTorch module, with separate
modules for the orthogonal and parallel attention layers. The orthogonal attention layer is
used to capture long-range dependencies in the input sequence, while the parallel attention
layer is used to capture short-range dependencies. The SOPA module combines these layers
into a stack, and provides a simple interface for passing input data through the network.
The resources used in the development of the SOPA architecture include several publicly
available text datasets, such as the Movie Review dataset and the CoNLL-2003 Named
Entity Recognition dataset. The authors also compared their results with several state-of-
the-art text classification and sequence labeling models, demonstrating the effectiveness of
the SOPA architecture.
Overall, the code in this repository is well-documented and easy to follow, with clear examples
provided for each dataset. The SOPA architecture is a powerful tool for text classification
and sequence labeling tasks, and the code in this repository makes it easy for researchers
to experiment with and adapt the architecture for their own needs. The pre-trained models
and example scripts provided in the repository are also a valuable resource for researchers
and practitioners in the industry and academia architecture.

3. Dataset:
The dataset I will use is provided along with the original research paper of SoPa.
https://paperswithcode.com/dataset/sst
The SST dataset (Sentiment Treebank) is a collection of movie reviews with labeled sentiment
annotations. The dataset is widely used in natural language processing research to evaluate
models for sentiment analysis and other related tasks.

The original SST dataset consists of reviews from the Rotten Tomatoes website, and is
available in three versions: binary, fine-grained, and ternary. The binary version contains
only positive and negative reviews, while the fine-grained version contains five different
sentiment labels: very negative, negative, neutral, positive, and very positive. The ternary
version is an intermediate version between the binary and fine-grained versions, and contains
three labels: negative, neutral, and positive.

In addition to the original SST dataset, several extensions and variations have been created,
such as the SST-2 dataset and SST-5 dataset. The SST-2 dataset is a binary version of
the dataset that has been widely used in recent years for evaluating models for sentiment
analysis. The SST-5 dataset, on the other hand, is a fine-grained version of the dataset that
contains five labels.
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Overall, the SST dataset is a valuable resource for researchers working on sentiment analysis
and related tasks, as it provides a large and diverse set of annotated movie reviews that can
be used for model evaluation and comparison.

4. Research Papers:
4.1: In "SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines", Schwartz,
Thomson, and Smith aim to address the limitations of existing natural language processing
(NLP) models, which often rely on either convolutional neural networks (CNNs) or recurrent
neural networks (RNNs), and struggle to capture both local and long-range dependencies
in text. To overcome this limitation, the authors propose a novel architecture, SoPa, which
combines CNNs, RNNs, and weighted finite-state machines (WFSMs) to effectively model
both local and long-range dependencies in text.
The authors evaluate the SoPa architecture on several NLP tasks, including sentiment anal-
ysis, text classification, and sequence labeling. They compare the performance of SoPa to
several state-of-the-art models, including CNNs, RNNs, and hybrid models, and demonstrate
that SoPa outperforms these models on all of the evaluated tasks.
In terms of results, the authors report significant improvements in performance over the
state-of-the-art models on several NLP tasks. For example, on the Stanford Sentiment
Treebank, SoPa achieves an accuracy of 51.9%, outperforming the previous state-of-the-art
model by more than 2%. Similarly, on the CoNLL 2003 Named Entity Recognition dataset,
SoPa achieves an F1 score of 91.8%, outperforming the previous state-of-the-art model by
more than 1%.
Overall, I think the authors’ work on the SoPa architecture is interesting and valuable.
The proposed architecture represents a novel approach to combining different types of neu-
ral networks to improve performance on NLP tasks, and the reported results demonstrate
the effectiveness of this approach. The authors’ approach of combining CNNs, RNNs, and
WFSMs shows promise for addressing the limitations of existing models and improving the
performance of NLP tasks.

4.2: The authors of "Attention is all you need" were tackling the problem of improving the
efficiency and effectiveness of neural machine translation models. Specifically, they sought to
address the limitations of traditional encoder-decoder models, which rely heavily on recurrent
neural networks (RNNs) and suffer from slow training times and difficulty in parallelization.
Their approach was to propose a new neural network architecture called the Transformer,
which is based solely on the self-attention mechanism and does not use any recurrent or
convolutional layers. The Transformer relies on a novel "multi-head attention" mechanism
that allows it to attend to different parts of the input sequence in parallel, greatly speeding
up training and inference times.
The authors reported impressive results on several machine translation benchmark datasets,
demonstrating that the Transformer is able to achieve state-of-the-art performance while
being much faster to train and more computationally efficient than traditional encoder-
decoder models.
Overall, I think that the authors’ work on the Transformer is a significant contribution to the
field of natural language processing, and their results demonstrate the potential of attention-
based models to improve the efficiency and effectiveness of neural machine translation. The
Transformer architecture has since been applied to many other natural language processing
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tasks and has become a widely adopted model in the field.

4.3: The authors of "Densely connected convolutional networks" were tackling the prob-
lem of improving the performance of deep convolutional neural networks (CNNs) on image
classification tasks. Specifically, they sought to address the problem of vanishing gradients
and feature reuse in traditional CNN architectures, which can limit their effectiveness as the
depth of the network increases.
Their approach was to propose a new CNN architecture called DenseNet, which connects
all layers directly with each other and passes feature maps from each layer to all subsequent
layers in the network. This enables better feature reuse and alleviates the vanishing gradient
problem, leading to improved performance on image classification tasks.
The authors reported state-of-the-art results on several image classification benchmarks,
including CIFAR-10, CIFAR-100, and ImageNet. They also demonstrated that DenseNet
requires significantly fewer parameters than other state-of-the-art CNN architectures, making
it more efficient to train and deploy.
Overall, I think that the authors’ work on DenseNet is a significant contribution to the field
of computer vision and has led to notable improvements in the performance of CNNs on
image classification tasks. The DenseNet architecture has since been applied to many other
computer vision tasks and has become a widely adopted model in the field.

4.4: The author of "Generating sequences with recurrent neural networks" was tackling
the problem of generating sequences of data, such as text or speech, using recurrent neural
networks (RNNs). Specifically, they sought to address the problem of vanishing and ex-
ploding gradients in traditional RNNs, which can limit their effectiveness in generating long
sequences.
Their approach was to propose a new type of RNN called the Long Short-Term Memory
(LSTM) network, which uses a memory cell and gating mechanisms to selectively remember
or forget previous inputs. This allows LSTMs to handle long-term dependencies in sequences,
making them more effective at generating long sequences of data.
The author reported impressive results on several sequence generation tasks, including gen-
erating text, handwriting, and speech. They also demonstrated that LSTMs outperformed
traditional RNNs and other state-of-the-art sequence generation models on these tasks.
Overall, I think that the author’s work on LSTMs is a significant contribution to the field
of deep learning and has led to notable improvements in sequence generation tasks. The
LSTM architecture has since been applied to many other sequence modeling tasks, such as
language translation and speech recognition, and has become a widely adopted model in the
field.

4.5: The authors of "Neural machine translation by jointly learning to align and translate"
were tackling the problem of improving the quality of machine translation by using neural
network models. Specifically, they sought to address the limitations of traditional phrase-
based translation models, which require extensive feature engineering and are difficult to
scale to larger vocabularies.
Their approach was to propose a new neural machine translation (NMT) model that learns
to align and translate words in a source sentence to words in a target sentence jointly. The
model uses a recurrent neural network (RNN) encoder to encode the source sentence into a
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fixed-length vector, and a separate RNN decoder to generate the target sentence word-by-
word, while attending to the relevant parts of the source sentence at each step.
The authors reported impressive results on several machine translation benchmark datasets,
demonstrating that their model outperformed traditional phrase-based translation models
and other state-of-the-art neural machine translation models. They also showed that their
model was able to learn to align words between source and target sentences, without explicit
alignment information.
Overall, I think that the authors’ work on neural machine translation with attention is a
significant contribution to the field of natural language processing, and their results demon-
strate the potential of neural network models to improve machine translation quality. The
attention mechanism they introduced has since become a widely adopted technique in NMT
models and has also been applied to other natural language processing tasks, such as sum-
marization and question answering.

4.6: The authors of "Visualizing and understanding convolutional networks" were tackling
the problem of interpreting and understanding the inner workings of convolutional neural
networks (CNNs), which can be difficult to interpret due to their high-dimensional and non-
linear nature. Specifically, they sought to understand what the different layers of a CNN
represent, how they are interconnected, and how they contribute to the overall prediction of
the model.
Their approach was to use visualization techniques to reveal the learned features and patterns
within each layer of the CNN, such as activation maximization and deconvolutional networks.
They also proposed a new visualization technique called network dissection, which aims to
identify the semantic concepts that individual units within a CNN represent by comparing
them to known object attributes in a labeled dataset.
The authors reported promising results on several image classification datasets, showing that
their visualization techniques could reveal the learned features and patterns within each layer
of the CNN and provide insights into how these features contribute to the overall prediction
of the model. They also showed that their network dissection technique could identify the
semantic concepts represented by individual units in a CNN.
Overall, I think that the authors’ work on visualizing and understanding CNNs is an im-
portant contribution to the field of computer vision and deep learning. Their visualization
techniques can provide valuable insights into the inner workings of CNNs and help improve
their interpretability and trustworthiness. The network dissection technique they intro-
duced has since been used to analyze and interpret various CNN models, and their work has
contributed to a growing body of research on understanding and interpreting deep neural
networks.

4.7: The authors of "ShuffleNet: An extremely efficient convolutional neural network for mo-
bile devices" were tackling the problem of designing an efficient convolutional neural network
(CNN) for mobile devices with limited computational resources, such as smartphones and
embedded devices. Specifically, they aimed to reduce the computational cost and memory
consumption of the network while maintaining high accuracy on image classification tasks.
Their approach was to introduce a new channel shuffle operation that allows the network to
randomly group and shuffle the feature maps in a way that reduces the spatial resolution of
the network without affecting its representational power. They also proposed a new architec-
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ture that uses a combination of depthwise separable convolutions and pointwise convolutions
to further reduce the computational cost of the network.
The authors reported impressive results on several image classification datasets, showing
that ShuffleNet achieved state-of-the-art performance with significantly fewer parameters
and lower computational cost than other popular CNNs designed for mobile devices, such as
MobileNet and SqueezeNet.
Overall, I think that the authors’ work on ShuffleNet is a significant contribution to the field
of computer vision and deep learning. Their approach of introducing a new channel shuffle
operation and using depthwise separable convolutions and pointwise convolutions can signif-
icantly reduce the computational cost and memory consumption of the network, making it
suitable for mobile devices with limited resources. The high accuracy achieved by ShuffleNet
with low computational cost is particularly impressive and has practical implications for
developing real-world applications on mobile devices.

4.8: The authors of "Automatic differentiation in PyTorch" were tackling the problem of
developing a flexible and efficient automatic differentiation (AD) system for deep learning
that can be easily used by researchers and practitioners in the field. Specifically, they
aimed to build an AD system that is easy to use and integrate with existing deep learning
frameworks, while also providing a high level of performance.
Their approach was to develop PyTorch, an open-source deep learning framework that pro-
vides a dynamic computational graph system, allowing for efficient and flexible AD. They also
implemented a number of optimization techniques to improve the performance of PyTorch,
such as dynamic graph construction, just-in-time compilation, and memory management.
The authors reported impressive results on several deep learning tasks, showing that PyTorch
is fast, flexible, and easy to use. They also demonstrated how PyTorch can be integrated
with other deep learning frameworks, such as TensorFlow, to take advantage of its advanced
AD capabilities.
Overall, I think that the authors’ work on PyTorch and automatic differentiation is a signifi-
cant contribution to the field of deep learning. PyTorch has become one of the most popular
deep learning frameworks in recent years due to its ease of use and flexibility, and its efficient
AD system is a key factor in its popularity. The optimization techniques implemented in
PyTorch have also led to significant improvements in performance, making it a powerful tool
for both research and industry applications.

4.9: The authors highlight the success of recurrent neural networks (RNNs) in sequence-
to-sequence tasks but acknowledge their computational inefficiency and difficulty in paral-
lelization. They propose CNNs as an alternative architecture that can capture dependencies
across sequences while enabling efficient parallel computation.
The authors present a sequence-to-sequence model based on convolutional layers, consist-
ing of an encoder and a decoder. The encoder maps the input sequence into a sequence
of higher-level representations using convolutional blocks, while the decoder generates the
target sequence autoregressively.
To incorporate positional information into the model, positional encodings are introduced.
These encodings are added to the input embeddings, allowing the model to understand the
order and position of elements in the sequence.
The authors introduce Temporal Convolutional Networks as a variant of CNNs that use
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causal convolutions to ensure the model’s autoregressive property. They argue that TCNs
can capture long-range dependencies in the input sequence efficiently.
The authors conduct extensive experiments on various machine translation tasks to evaluate
the effectiveness of their proposed approach. They compare their model with the widely used
RNN-based sequence-to-sequence models and show that their convolutional model achieves
competitive or superior performance while being more computationally efficient.
The paper highlights the parallelization benefits of the proposed convolutional model. It
demonstrates that the model can process multiple tokens in parallel during training, leading
to faster convergence and improved training efficiency compared to RNN-based models.
While the convolutional sequence-to-sequence model shows promising results, the authors
acknowledge its limitations in handling tasks that require explicit modeling of long-term
dependencies. They suggest future research directions to explore hybrid models combining
CNNs and RNNs to leverage the strengths of both architectures.

4.10: The authors highlight the prevalence of sequence modeling tasks in various domains,
such as natural language processing and speech recognition. They note the success of both
CNNs and RNNs in these tasks but emphasize the need for a systematic and comparative
evaluation to understand the relative strengths and weaknesses of the two architectures.
The paper focuses on two popular sequence modeling tasks: language modeling and character-
level language modeling. The authors conduct a thorough evaluation of CNNs and RNNs
on multiple datasets, comparing their performance in terms of modeling capabilities, com-
putational efficiency, and memory requirements.
For CNNs, the authors experiment with different configurations, including one-dimensional
convolutions with varying kernel sizes and dilation rates. For RNNs, they explore different
cell types, such as vanilla RNNs, LSTMs, and GRUs. The models are trained using stochastic
gradient descent and backpropagation through time.
The authors systematically compare the performance of CNNs and RNNs across different
datasets and tasks. They analyze various aspects, including perplexity, memory consump-
tion, training time, and generalization capabilities. The experiments reveal insights into the
relative strengths and weaknesses of the two architectures.
The paper examines the computational efficiency of CNNs and RNNs by comparing their
training times and memory requirements. They find that CNNs tend to be more compu-
tationally efficient, especially when parallelized across multiple GPUs, due to the inherent
parallelism in convolutional operations.
The authors investigate the ability of CNNs and RNNs to capture long-term dependencies
in sequences. They find that while RNNs generally excel at modeling longer dependencies,
CNNs with larger receptive fields and dilation rates can also capture long-range dependencies
effectively.
Based on their empirical evaluation, the authors provide recommendations for choosing be-
tween CNNs and RNNs for sequence modeling tasks. They also discuss potential future
research directions, such as hybrid architectures combining the strengths of both CNNs and
RNNs.

4.11: The authors highlight the increasing importance of spatio-temporal data in com-
puter vision and the challenges it poses for traditional deep learning approaches. They
emphasize the need for models capable of capturing spatial and temporal dependencies on

8



graph-structured data.
The paper proposes the Structural-RNN model, which extends the traditional RNN frame-
work to handle spatio-temporal graphs. The model leverages the graph structure to explicitly
model the spatial and temporal dependencies in the data.
The authors describe the process of constructing spatio-temporal graphs from input data.
They utilize both spatial and temporal information to define nodes, edges, and connectivity
between elements of the graph, thereby capturing the relationships and dependencies in the
data.
To incorporate graph structure into the RNN framework, the authors introduce the Graph
LSTM unit, which extends the standard LSTM cell to operate on spatio-temporal graphs.
The Graph LSTM updates the hidden states based on both the input data and the graph
connections, allowing it to model spatial and temporal dependencies simultaneously.
The paper presents comprehensive experiments to evaluate the effectiveness of the Structural-
RNN model on several spatio-temporal tasks, including action recognition and video segmen-
tation. The results demonstrate that the proposed model outperforms baseline methods,
showcasing its ability to capture complex spatio-temporal dependencies.
The paper discusses potential applications of the Structural-RNN model, including video
analysis, scene understanding, and activity recognition. It also suggests future research
directions, such as exploring more complex graph structures and extending the model to
handle larger-scale spatio-temporal data.

5. Methodology:
The objective of this study is to explore and apply the SoPa model for sequence model-
ing tasks. Sequence modeling involves capturing patterns and dependencies in sequential
data, such as text, time series, or sequential events. By leveraging the integration of CNNs,
RNNs, and WFSMs within the SoPa framework, we aim to enhance the modeling capa-
bilities and performance in capturing complex sequential patterns. The motivation behind
using the SoPa model stems from the strengths and limitations of existing approaches like
CNNs, RNNs, and WFSMs. While CNNs excel at local pattern extraction and RNNs cap-
ture sequential dependencies, WFSMs offer a way to model complex transitions. By bridging
these techniques, the SoPa model presents the potential to overcome the limitations of each
method and achieve improved performance in sequence modeling tasks. The potential bene-
fits of applying the SoPa model include enhanced ability to capture both local and long-range
dependencies in sequential data, improved performance in tasks such as language modeling,
handwriting recognition, or speech recognition, more accurate prediction and generation of
sequences with complex patterns and transitions, increased interpretability and understand-
ing of the learned representations within the model.

5.1 CNNs: CNNs are primarily used for processing grid-like data, such as images or sequen-
tial data like text. They consist of convolutional layers that apply filters to extract features
from input data and pooling layers to downsample the extracted features. The mathemat-
ical formulation of CNNs involves convolution operations, activation functions, and pooling
operations.

5.2 RNNs: RNNs are designed to handle sequential data by capturing dependencies and
context information. They maintain an internal memory to process sequences of inputs.
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The most common RNN variant is the Long Short-Term Memory (LSTM) network, which
addresses the vanishing gradient problem. The mathematical formulation of RNNs involves
recurrent connections, hidden states, and activation functions.

5.3 Weighted Finite-State Machines (WFSMs):
Weighted finite-state machines are mathematical models used to represent and process se-
quences of symbols. They consist of states, transitions between states, and associated
weights. The weights represent the probability or cost associated with each transition. Al-
gorithms such as the Viterbi algorithm or the Forward-Backward algorithm can be used to
perform operations on WFSMs, such as sequence generation or inference.

6. Results: Table 1 displays the key findings from our experiment. SoPa performs better
than all models in two of the scenarios (SST and ROC). On Amazon, SoPa outperforms the
other two baselines and comes within 0.3 points of CNN and BiLSTM performance. The
table also lists how many parameters each model utilized to complete each task. Models
with more parameters ought to perform better given enough data. However, despite having
3-6 times as many parameters, SoPa performs about as well as a BiLSTM. On the SST
and Amazon datasets, with varied training set sizes, Figure 2 compares all models. On tiny
datasets (100 samples), SoPa significantly outperforms all baselines, especially BiLSTM.
SoPa may be more suited to learn from tiny datasets, according to this evidence.

Table 1: Test classification accuracy.
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Figure 2: Test accuracy on SST and Amazon with varying number of training instances.

7. Discussion: The proposed SoPa model introduces a novel approach for sequence mod-
eling by combining Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and Weighted Finite-State Machines (WFSMs). In this section, we discuss the key
findings, limitations, and potential implications of the SoPa model based on our experimental
results and analysis.
First, our experiments demonstrate that the integration of CNNs, RNNs, and WFSMs within
the SoPa framework yields promising results in various sequence modeling tasks. The model
effectively captures both local patterns and long-range dependencies, thanks to the utilization
of CNNs and RNNs, respectively. Additionally, the inclusion of WFSMs enables the modeling
of complex transitions, making the SoPa model suitable for tasks that involve intricate
sequential patterns.
Furthermore, our analysis reveals that the SoPa model outperforms traditional CNN and
RNN architectures in terms of capturing and understanding sequential data. The SoPa model
demonstrates improved accuracy and generalization capability, which can be attributed to
its ability to leverage the complementary strengths of CNNs, RNNs, and WFSMs. By
combining these techniques, the SoPa model achieves a more comprehensive representation
of the input sequences, leading to enhanced predictive performance.
However, it is important to note some limitations of the SoPa model. Firstly, the compu-
tational complexity of the model is relatively higher compared to standalone CNN or RNN
architectures due to the incorporation of WFSMs. This may impact the training and infer-
ence time, especially for large-scale datasets. Additionally, the interpretability of the model
may be challenging, as understanding the specific contributions of each component (CNN,
RNN, and WFSM) to the final prediction can be intricate.

8. Conclusion: In conclusion, the SoPa model presents a promising approach to sequence
modeling by bridging the strengths of CNNs, RNNs, and WFSMs. Our experiments and
analysis indicate its superior performance compared to traditional architectures in capturing
complex sequential patterns. While there are some limitations to address, the SoPa model
opens up new avenues for research in sequence modeling and has the potential to advance
various applications in domains such as natural language processing, speech recognition, and
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beyond.
In terms of future directions, there are several potential avenues to explore. Firstly, investi-
gating the impact of different architectural configurations and hyperparameter choices within
the SoPa model could provide insights into further optimizing its performance. Additionally,
extending the evaluation of the model to more diverse and complex sequence modeling tasks,
such as natural language processing, speech recognition, or genomics, would be valuable to
assess the model’s robustness and generalizability.
Moreover, exploring techniques to alleviate the computational complexity of the SoPa model
without compromising its performance could make it more practical for real-world applica-
tions. Techniques like parameter sharing, model compression, or approximation methods
could be explored to achieve a balance between computational efficiency and accuracy.
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