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Abstract—Phase transition studies are crucial for understand-
ing the behavior of materials under various conditions. Com-
putational methods, such as Monte Carlo simulations, have
proven to be valuable tools in predicting and optimizing material
properties. This paper focuses on the application of Monte Carlo
simulations to determine phase transitions of materials from an
ordered to a disordered state.

Monte Carlo simulations, extensively employed in materials
science, enable the examination of complex systems at the atomic
or molecular scale. A prominent use of Monte Carlo simulations
lies in characterizing phase transitions in liquid materials. These
transitions encompass changes in thermodynamic properties,
such as density or heat capacity, resulting from alterations in
temperature or pressure. [1]

This report presents a Monte Carlo simulation method based
on the Lennard-Jones potential, a widely accepted model for
simulating particle interactions in a system. The simulation
involves randomly sampling particle positions and utilizing a
Metropolis algorithm to accept or reject moves based on changes
in system energy. By manipulating temperature and pressure, the
simulation determines the conditions under which the material
undergoes a phase transition.

The outcomes of the simulation, including energy and heat
capacity plots as functions of temperature, along with the phase
diagram, are detailed in this report. These results illustrate
the effectiveness of the Monte Carlo simulation method in
determining phase transitions in liquid materials and underscore
the potential for further investigations in this domain.

Index Terms—Monte Carlo, phase transition, simulation, par-
ticle, liquid material,

I. INTRODUCTION

The phase transition studies of materials are useful because
it helps us to understand the behavior of materials under
different conditions. The use of computational methods, such
as Monte Carlo simulations, to simulate phase transitions can
be very helpful in predicting and optimizing the properties of
materials.

Monte Carlo simulations are widely used in materials
science to study the behavior of complex systems at the
atomic or molecular scale. One important application
of Monte Carlo simulations is the determination of the
phase transition of liquid materials. A phase transition is a

physical process where a material undergoes a change in
its thermodynamic properties, such as its density or heat
capacity, due to a change in temperature or pressure.

Monte Carlo simulations use random sampling to simulate
the behavior of particles in a system, allowing researchers
to study the statistical properties of the system and predict
its behavior under different conditions. In the case of liquid
materials, Monte Carlo simulations can be used to model
the behavior of the individual particles and to determine the
conditions at which the system undergoes a phase transition
from a liquid to a solid or gas state. [1]

This report describes a Monte Carlo simulation method
for determining the phase transition of a liquid material. The
simulation is based on the Lennard-Jones potential, which is
a widely used model for simulating the interactions between
particles in a system. The simulation involves randomly
sampling the positions of the particles in the system and
using a Metropolis algorithm to accept or reject moves based
on the change in energy of the system. By varying the
temperature and pressure of the system, the simulation can
be used to determine the conditions at which the material
undergoes a phase transition.

The report presents the results of the simulation, including
plots of the energy and heat capacity of the system as a
function of temperature, as well as the phase diagram of the
material. The results demonstrate the effectiveness of the
Monte Carlo simulation method for determining the phase
transition of liquid materials and highlight the potential for
further research in this area.

II. RELATED WORKS

The phase behavior of solids, liquids and gases is an
important area of study in materials science and engineering.
Understanding the phase behavior is essential for developing
new materials and processes. Monte Carlo simulation is a
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popular computational tool for studying the phase behavior.
This literature review examines research using Monte Carlo
simulation to determine the phase transition of materials.

Several studies have used Monte Carlo simulation to
determine the phase transition of liquid materials. K. S. Page
and P. A. Monson (1996) used Monte Carlo simulations to
study the phase diagrams for a fluid confined in a disordered
porous material. They found the inhomogeneity and disorder
of the equilibrium phases in the system. Other research has
focused on improving the accuracy and efficiency of Monte
Carlo simulations for determining the phase transition of
liquid materials. Liu and Luijten (2010) developed an efficient
cluster algorithm for simulating the phase behavior of fluids
using Monte Carlo methods. They have described a variant
of the GCA for the accurate determination of phase behavior
in highly size-asymmetrical fluid mixtures. [2] [3]

In addition to studying the dynamic phase transitions
of materials, researchers have also used Monte Carlo
simulations. It has been used for advanced research to
determine magnetic properties. To study the dynamic phase
transitions, J.D. Alzate-Cardona, H. Barco-Rı́os and E.
Restrepo-Parra (2018) performed simulations of magnetic
properties of La2/3Ca1/3MnO3 employing the Monte Carlo
method. Similarly, Z.D. Vatansever and E. Vatansever (2017)
used the Monte Carlo simulation to study the thermal
and magnetic phase transition properties of a binary alloy
spherical nanoparticle. With the metropolis algorithm, they
have studied the finite temperature phase transition properties.
Taking the help of adjustable Hamiltonian parameters, they
were able to show the possibility of controlling the critical
characteristic behaviors of the system.

Monte Carlo simulation is a powerful tool for determining
the phase transition of materials. Recent research has
demonstrated its effectiveness in studying the phase behavior
of both simple and complex liquids, as well as other
materials. Improving the accuracy and efficiency of Monte
Carlo simulations is an active area of research, and new
developments in this area will likely lead to more accurate
predictions of the phase behavior of liquid materials. The use
of machine learning techniques with Monte Carlo simulation
is a promising approach for improving the efficiency and
accuracy of simulations. Overall, Monte Carlo simulation
is a valuable tool for studying the phase behavior of liquid
materials, and its applications. [4]

III. METHODOLOGY

In this code we simulate the behavior of 1000 interacting
particles inside a 2D box, using a Monte Carlo method to
calculate the energy and position of the particles at different
temperatures. [5] [6]

We first set some parameters such as the number of particles,
the box size, the minimum and maximum temperature, the
number of temperature points, and the number of Monte Carlo
steps. We then generate initial particle positions randomly
inside the box. The energy of the system is calculated using
the Lennard-Jones potential. E = 4 ·

((
1
r

)12 − (
1
r

)6)
Here r

is the distance between two particles, and the constant 4 is
used for convenience.

The Lennard-Jones potential is a pairwise potential
function commonly used to model the interactions between
two atoms or molecules in a molecular simulation. It is named
after John Lennard-Jones, who proposed the potential in 1924.

The Lennard-Jones potential energy between two particles
is given by:
V (r) = 4 · ε ·

[(
σ
r

)12 − (
σ
r

)6]
The code randomly initializes the particle positions inside

the box, then iterates over a range of temperatures. At each
temperature, it performs 10 Monte Carlo steps to update the
positions of the particles. The Monte Carlo step function
chooses a random particle and moves it a small distance in a
random direction, then calculates the energy change due to
this move.

If the move decreases the energy, it is accepted. If it
increases the energy, it may still be accepted with a probability
according to the Boltzmann factor: exp

(
−∆E

kT

)
The Monte Carlo simulation loop runs over 50 temperature

points and performs a specified number of Monte Carlo steps
for each temperature. The energy of the system is calculated
after each step and stored in an array. Finally, the energy is
plotted as a function of temperature.

Fig. 1. Temperature

IV. RESULT ANALYSIS

By analyzing the energy vs temperature plot, we can observe
the presence of a phase transition in the system. It can be



TABLE I
SHOWCASING THE DATA PLOTTED IN THE GRAPH

Temperature Point Energy
0
0.10204082
0.20408163
0.30612245
0.40816327
0.51020408
0.6122449
0.71428571
0.81632653
0.91836735
1.02040816
1.12244898
1.2244898
1.32653061
1.42857143
1.53061224
1.63265306
1.73469388
1.83673469
1.93877551
2.04081633
2.14285714
2.24489796
2.34693878
2.44897959
2.55102041
2.65306122
2.75510204
2.85714286
2.95918367
3.06122449
3.16326531
3.26530612
3.36734694
3.46938776
3.57142857
3.67346939
3.7755102
3.87755102
3.97959184
4.08163265
4.18367347
4.28571429
4.3877551
4.48979592
4.59183673
4.69387755
4.79591837
4.89795918
5

5.055710409931332e+19
5.055707438607386e+19
5.0557072788498964e+19
5.055706555767395e+19
2.5388297371027227e+19
8.832328257331035e+16
1686945379866468.5
1086329679339246.8
282175474972968.25
1.0123019497581476e+20
1.1247771504838146e+20
1.1247765178495726e+20
1.1247764856128243e+20
1.1247764801760438e+20
1.1247748017336903e+20
1.1247746105188994e+20
1.1247746217407195e+20
1.1247848063202987e+20
1.1251299300519305e+20
1.1257166608394255e+20
1.1251112186447687e+20
1.1249634179778078e+20
1.1249642078366138e+20
1.1249659790426902e+20
1.124965992006472e+20
1.1249716251964329e+20
1.1249743719273349e+20
1.125130806704427e+20
1.1253651589887928e+20
1.1253644469579353e+20
1.12536419531457e+20
1.1253643213066138e+20
1.1250994091168355e+20
1.1278829286907615e+19
3974783869493873.5
1660404655558287.0
14970388104291.928
21619516211197.28
1.0142193897478042e+16
1.4398994373597684e+16
1.440801755745869e+16
1.4457119568906918e+16
6.119820367401357e+20
1.223949585049224e+21
6.119696407000653e+20
385312446545113.9
1.197442830322933e+22
1.7106326073762264e+22
1.710632606596899e+22
1.7106326093597065e+22

Fig. 2. Particle’s positions at the final temperature

used to simulate the behavior of a system of particles that
undergoes a phase transition from an ordered state (liquid)
to a disordered state (gas) as the temperature increases. The
transition from liquid to gas can be seen as a sharp energy
increase as temperature increases beyond a certain point. From
temperature point 4.28571429, the phase transition starts and
occurs till temperature point 4.79591837. In this part, the
energy of the particle increases from 6.119820367401357e+20
to 1.7106326073762264e+22. We can observe that this is the
transition period where the liquid particles gain more energy
as the temperature increases. This is the phase where we can
see the vaporization of the liquid materials.

At low temperatures, the particles tend to be ordered and
close-packed, forming a crystal-like structure. As the tem-
perature increases, the particles become more disordered and
the density decreases, as they have more kinetic energy to
overcome the attractive interactions between them. At very
high temperatures, the particles become completely disordered
and the density approaches that of an ideal gas. From the
second picture (Particle’s positions at the final temperature) we
can observe the particle’s final position at temperature reaches
the highest value. It is clear that at a higher temperature, the
distance between the liquid particles increases which results
in decreasing density.

V. CONCLUSION

In this simulation, we studied the behavior of 1000 particles
interacting via a Lennard-Jones potential inside a 10 x 10
box, as a function of temperature. The energy of the system
was calculated using a Monte Carlo simulation with 10 steps
for each of the 50 temperature points ranging from 0 to 5.
The obtained results show a clear increase in energy as the
temperature increases.

In addition to the energy-temperature plot, a visualization of
the system at a temperature of Tmax

2 was shown, which depicts
the positions of the particles after 10 Monte Carlo steps. This
visualization gives us a glimpse into the structure of the system
and how it evolves with temperature.



The simulation could be extended to study the behavior of
the system as a function of density, by changing the number of
particles and keeping the box size constant. This would allow
us to study the effect of particle-particle interactions on the
phase behavior of the system. We can also use such simulation
to determine more complex properties of materials such as
magnetic properties and structural properties. Also, machine
learning techniques can be used to improve the accuracy and
efficiency of Monte Carlo simulations for determining the
phase behavior of liquid materials.
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