Snake game using Reinforcement Learning

Md Abdullah Al Symum
Id 18201007
School of Data and Sciences
Brac University
Dhaka, Bangladesh
md.abdullah.al.symum@g.bracu.ac.bd

Abstract—Machine learning techniques like reinforcement
learning teach an agent to base decisions on information it
receives from the environment around it. The renowned game
of Snake is one example of how effectively this approach has
worked in game development. The snake’s basic movements,
evaluation skills, and general expertise can all be improved
through reinforcement learning. The agent may improve its
methods for making decisions while gaining knowledge from its
own observations through using this approach. Agents earned
higher and survived competitors better as an outcome of the
application of reinforcement learning in the snake game. The
future use of this technology in other video games as well as
applications appears promising.

Index Terms—Tentative Keyword 1, Tentative Keyword 2

I. INTRODUCTION

There are a lot of machine learning algorithms we can
see on the internet that are profound in giving results
based on their training data and test data, but among them,
Reinforcement learning is a kind of machine learning that
helps an agent, through trial and error, make the best possible
decision in a specific scenario. Through this approach, an
agent can learn to make decisions that maximize a specific
reward or outcome.

The basic premise of reinforcement learning is that an
agent receives feedback from an environment in the form
of rewards or penalties for its actions. The agent proceeds
to employ this information to adjust its actions and make
further choices that are more likely to result in an improved
outcome.

In contrast to other types of machine learning, reinforcement
learning does not rely on pre-labeled data or supervised
learning. Instead, an agent learns by interacting with its
environment and continuously receiving feedback. This
allows it to learn and improve with experience, adapting
to changing circumstances and continually optimizing its
decision-making processes.

One of the most notable applications of reinforcement
learning is gameplay. Through reinforcement learning, an
Al agent can learn to play games such as chess or go at a
surprisingly high level of skill, often surpassing that of human
players. Reinforcement learning is also used in robotics and
autonomous systems, as it allows these systems to learn how

to navigate and interact with their surroundings.

Overall, reinforcement learning is a potential tool for cre-
ating artificial intelligence that can learn and adapt to com-
plicated and unpredictable situations. Its ability to improve
decision-making processes through trial and error continues
to make it a critical area of research and development in the
field of machine learning.

Reitman et al. [?]

II. LITERATURE REVIEW

Reinforcement learning is an aspect of machine learning
that allows a machine to figure out how to make intelligent
choices by communicating with its surroundings. In
Reinforcement Learning, an actor develops their behavior
by performing operations in an environment while getting
suggestions in the form of awards or penalties.

The key idea behind RL is to optimize the overall benefit
gradually by learning an optimal approach that improves
anticipated benefits. Some examples of RL applications
include robotic control, gameplay, and autonomous driving.

The RL algorithm consists of defining a state space, an
action space, a reward function, and the agent’s policy. The
agent learns by interacting with the environment, observing
the current state, taking action, receiving a reward, and then
updating its policy to maximize future rewards.

One of the challenges of RL consists of the overview-
exploitation choices. In order for the machine to make
the best possible decisions, it must try new actions,
which implies collecting more information concerning the
surrounding environment. However, it also needs to exploit
the knowledge it has already gained to maximize rewards.
This requires striking a delicate balance between exploration
and exploitation.

There are several RL algorithms, such as Q-learning,
SARSA, and actor-critic methods. Q-learning is a value-based
algorithm commonly used to acquire the most effective
behavior-value functions by modifying the Q-value of the
present state action pairing based on the highest Q-value in
the following region. SARSA is also a value-based algorithm



that acquires the best policy by updating the Q-value for a
state-action pairing according to the next state-action pair
following the policy. Actor-critic methods combine policy-
and value-based approaches by acquiring information about
both the actor’s values and policies.

There are also Deep Reinforcement Learning (DRL)
techniques that use neural networks as a tool to estimate the
Q-function. DRL has achieved remarkable success in many
applications, including Atari games and Go. But because
of the data’s non-stationarity and the relationship among
samples, DRL is also susceptible to unpredictability issues.

In recent years, several advancements have been made
in RL, such as multi-agent RL, meta RL, and model-based
RL. Multi-agent RL enables agents to learn together by
interacting with each other and the environment. Meta-RL
enables agents to adapt quickly to new tasks by leveraging
the knowledge learned from previous tasks. Model-based RL
learns the model of the environment and uses it to plan the
optimal policy.

A scalable alternative to Reinforcement Learning called
“evolution strategies” (ES) is a black-box optimization
technique that optimizes a large number of parameters
simultaneously by randomly perturbing them and selecting
the best candidates in each generation. ES can be used to solve
complex reinforcement learning tasks, especially when the
environment is non-differentiable or the rewards are sparse.
ES is also shown to be more sample-efficient than traditional
Reinforcement Learning algorithms. The effectiveness of
ES in a variety of challenging environments, including
Atari games, MuJoCo physics simulations, and humanoid
robot locomotion. ES may be particularly useful for deep
Reinforcement Learning tasks, where the high-dimensional
state space makes traditional techniques more challenging.

Soft Actor-Critic (SAC), a new algorithm for deep
Reinforcement Learning with a stochastic actor. SAC
combines the benefits of maximum entropy Reinforcement
Learning and stochastic actor-critic methods. It achieves
state-of-the-art performance on several benchmark tasks in
terms of sample efficiency and final performance. Unlike
previous methods with similar properties, SAC has no
hyperparameters that require tuning on the task at hand.
The algorithm is based on finding a stochastic policy that
maximizes the expected cumulative reward while also
maximizing entropy. By doing so, the agent explores the
environment more optimally and can avoid getting stuck
in local optima. Furthermore, the algorithm uses a critic, a
neural network that estimates the state-action value function
in order to update the policy. The Soft Actor-Critic algorithm
offers an efficient and easy-to-use approach for reinforcement
learning that can lead to faster convergence and better
performance. The combination of entropy and value-based
reinforcement learning with a stochastic actor addresses

several challenges in deep reinforcement learning, including
exploration-exploitation tradeoffs and sample efficiency.

In conclusion, Reinforcement Learning is an effective ma-
chine learning model that makes it possible for an agent to
figure out how to execute actions by engaging with their
surroundings. RL algorithms require defining a state space, an
action space, a reward function, and a policy. RL algorithms
have achieved remarkable success in many applications, in-
cluding robotic control, gameplay, and autonomous driving.
DRL techniques use artificial neural networks to estimate the
Q-function or policy, and recent advancements in RL include
multi-agent RL, meta-RL, and model-based RL.

III. RESEARCH METHODOLOGY

Reinforcement learning represents a subfield of machine
learning that analyzes how artificially intelligent agents need
to act in an environment with the aim of maximizing the
principle of cumulative bonuses. Snake is a well-known game
that provides a strong basis for constructing an environment
where intelligent agents may acquire knowledge. In this
methodology, we will discuss how to create a snake game for
reinforcement learning.

Environment Design: The first step in creating a Snake
game for reinforcement learning is to design the game
environment. It should have a 2-D grid where the snake can
move, the snake’s starting position, the food position, and the
boundary of the game environment.

Agent Design: The second step is to design the agent. The
agent is the entity that will discover how to navigate the game.
In a Snake game, the agent is the Snake. The agent will learn
to make decisions depending on the present circumstances
of the challenge in order to maximize its score. At the
beginning of the game, the snake has a default direction. The
agent will act responsibly as the game evolves, and as the
behaviors have an outcome, they will be awarded or punished.

Reward Function: The reward function determines the
feedback that the agent gets for its actions. In a snake game,
the agent will be rewarded for eating food and penalized for
hitting the boundaries or hitting itself. The reward function
should be designed in a way that encourages the agent to
eat as much food as possible while avoiding hitting the
boundaries or hitting itself.

State Representation: The state representation is a way
of summarizing the relevant information about the current
state of the game. It should be concise and capture all the
relevant information. In a snake game, the state representation
should include the current location of the snake’s head and
the food. It should also consider the presence of obstacles in
the snake’s path.



Action Space: The action space is the set of actions that
the agent can take. The snake can make four possible moves
— up, down, left, or right. These movements can be defined
as the “action space.”

Learning Algorithm: The reinforcement learning algorithm
is the heart of the methodology. The most prominent
reinforcement learning algorithm is Q-learning. Q-learning is
a model-free reinforcement learning algorithm that learns to
maximize the cumulative reward. It is a value-based algorithm
that discovers the best approach by repeatedly modifying
the Q-function. The Q-function indicates the probable future
reward for a given condition and behavior.

Training Process: To train the agent, we simulate the
game environment and let the agent play the game. At
each new stage, the agent examines the present state while
deciding a move in accordance with its current state of
policy. After taking the step, the agent obtains an award. The
Q-function gets updated using the reward that was acquired
and a state-action pair.

By doing this, after a certain period of time, our snake
can gradually perform better in the environment. Through
continued action taken by the snake, it will improve its
understanding of its surroundings, and after a while, it will
eventually become an unbeatable snake.

IV. RESULTS

The snake game is a classic game where a player controls
a snake to collect food while avoiding obstacles and their
own tail. Using Reinforcement Learning, agents have been
developed that can learn to play and succeed in the snake
game.

The agents in the Reinforcement Learning approach use a
trial-and-error method of learning while playing the game.
They learn through rewards and punishments, with rewards
being given for positive actions like collecting food and
punishments for negative actions like crashing the snake into
the wall or the tail.

The agents start with no knowledge of how to play the
game, but over time they learn through playing multiple
games and collecting rewards. The agent’s main task is
to maximize the reward it receives by taking actions that
successfully collect food while avoiding punishment.

The results of using Reinforcement Learning in the snake
game have been quite impressive. The agents learn to play the
game effectively and score high. They learn to avoid obstacles
and navigate the game board to collect food. Over time, the
agents become better and better at the game, achieving higher
scores and surviving longer. The Reinforcement Learning
approach to playing the snake game has been successful in
training agents to play the game effectively. The agents learn

to adapt to the changing environment and make decisions
determined by the current situation of the game. For instance,
the agents learn to strategically move around the board to
avoid obstacles and collect food, which in turn helps them
get a higher overall reward.

Reinforcement Learning has shown a lot of promise in the
game development industry, and the snake game is a perfect
example of how this approach can be successfully applied.
Through the use of Reinforcement Learning, agents can be
taught to engage in the game like humans, adapting to the
different situations encountered in the game.

Overall, the results of using Reinforcement Learning
in the snake game have been highly effective, and the
technology has shown great promise for use in other games
and applications as well. With further developments and
improvements in the algorithm, Reinforcement Learning can
be a critical component of game development going forward.

A. Discussion

Reinforcement learning is a type of machine learning
algorithm in which machines learn to make decisions based
on the feedback they receive from the environment in which
they operate. One practical implementation of this paradigm is
in game development. The snake game is a classic game that
can be suitably adapted for reinforcement learning purposes.

A game of snake is a finite, turn-based game that is suited
for reinforcement learning at multiple levels. The game
involves a snake (a collection of squares) that must maneuver
around a rectangular field. The snake starts with a length of
one, and whenever it eats the food (a single square), its length
increases by one. The game ends when the snake collides
with the wall or itself. In this context, reinforcement learning
can be applied to:

Improve the snake’s basic movements: At the simplest
level, reinforcement learning can be applied to teach the
snake how to move around the field without running into
the wall or itself. This is essentially an exploration problem,
where the machine needs to explore different movements and
learn which movements lead to a longer life. The reward
function can be defined as the length of the snake. As the
game progresses, the machine can learn from its experiences
and improve its movements.

Improve the snake’s decision-making ability:
Reinforcement Learning can be applied to teach the
snake how to make better decisions when it comes to
approaching food. At the core of this exercise is the problem



of pathfinding, where the machine needs to formulate a path
from its current position to the food without running into any
obstacles. The reward function can be defined as the length
of the snake and its proximity to the food. As the game
progresses, the machine can learn from its experiences and
improve its decision-making abilities.

Improve the overall experience: Reinforcement Learning
can be applied to improve the overall experience of the game.
This can be done by introducing additional challenges to
the game, such as varying sizes of the field or additional
bonuses for the snake. The main challenge lies in defining the
appropriate reward functions for these additional challenges.
Once the appropriate reward functions have been defined,
the machine can learn from its experiences and improve the
overall experience of the game.

Reinforcement Learning provides a robust mechanism for
improving the game of snakes. At its core, the technology
is well-suited for teaching the snake how to make better
decisions, improve its overall experience, and make the
game more enjoyable to play. However, there are challenges
associated with implementing reinforcement learning in the
context of snake, such as defining the appropriate reward
functions and balancing the reward system to ensure that
the machine does not become too aggressive or passive.
Nonetheless, with the right approach and focus, the game of
snake can be greatly improved through reinforcement learning
techniques.

V. CONCLUSION FUTURE WORK

The use of reinforced learning in the development of the
Snake game has proven to be a promising approach. The
game has successfully provided an enjoyable and engaging
experience to players while also demonstrating the potential
of artificial intelligence in the gaming industry.

The application of reinforced learning has enabled the
Snake game to learn from its mistakes and improve its
performance based on the rewards it receives from the
environment. This has resulted in a game that is more
challenging and responsive, providing players with a more
immersive gaming experience.

Moreover, the Snake game has also highlighted the
versatility of reinforced learning in the development of
different types of games. The approach can be applied to
create games that are more dynamic and adaptable to different
skill levels and playing styles.

Finally, the use of reinforced learning in the Snake game
can also have far-reaching implications for the gaming
industry. Game developers can use this approach to create
games that are more engaging, challenging, and personalized

to each player, ultimately resulting in a more satisfying
gaming experience.

However, there are still several challenges that need to be
addressed in the application of reinforced learning in gaming.
These include issues of scalability, interpretation of results,
and the need for a more comprehensive understanding of
player behavior and preferences.

Despite these challenges, the Snake game has demonstrated
that reinforced learning has enormous potential in the gaming
industry. As technology continues to advance, we can
expect to see more sophisticated and immersive games that
capitalize on the power of artificial intelligence to provide a
more engaging and personalized gaming experience to players.

The following are the possible sectors in that Reinforced
Learning can be improved:

Scaling up: One area of future work for reinforcement
learning is to scale up the techniques for large-scale, complex
environments. This is important because many real-world
problems are complex, and reinforcement learning needs to
be able to handle these large-scale situations.

Transfer learning: Transfer learning is the ability of a
trained model to apply its knowledge to new, similar tasks.
One area for future work is to develop transfer learning
techniques that enable models to learn faster and transfer
knowledge more effectively between tasks.

Explainability: Reinforcement learning models can be
difficult to understand, as it can be hard to figure out why a
model made a particular decision. Future work in this area
may focus on developing techniques for making models more
explainable and transparent.

Robustness: Robustness is the ability of a model to perform
well in different environments and under different conditions.
Future work may focus on developing reinforcement
learning techniques that are more robust, such as models that
can adapt to changing conditions or handle unexpected events.

Multi-agent systems: Multi-agent reinforcement learning
is an area of research focusing on developing models that can
learn in environments with multiple agents. Future work in
this area may include developing more robust and scalable
techniques for multi-agent learning.



