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Abstract—Federated learning has emerged as a promising
approach for training machine learning models while preserving
data privacy. However, the vulnerability of federated learning
systems to data poisoning attacks poses a significant threat to
their integrity and reliability. In this report, we critically analyze
the defense system proposed by Tolpegin et al. for mitigating data
poisoning attacks in federated learning. Through a systematic
evaluation, we uncover vulnerabilities and limitations within the
defense system, highlighting the challenges of effectively detecting
and mitigating sophisticated adversarial strategies. Our findings
emphasize the need for further research and development in the
domain of defense mechanisms for federated learning systems,
particularly in addressing adaptive attacks and ensuring robust
detection of malicious data. We also stress the importance
of collaborative efforts among researchers, practitioners, and
industry stakeholders to collectively advance the security and
trustworthiness of federated learning systems. By enhancing the
resilience of defenses and fostering open discussions, we can strive
towards the widespread adoption of federated learning while
safeguarding data integrity, privacy, and model reliability.

Index Terms—Federated Learning, Data Poisoning

I. INTRODUCTION

In recent years, federated learning has been a good approach
to preserve the data privacy of different models.FL systems
allow global model training without the sharing of raw private
data. Instead, individual participants only share model param-
eter updates. Consider a deep neural network (DNN) model.
DNNs consist of multiple layers of nodes where each node is
a basic functional unit with a corresponding set of parameters.
Nodes receive input from the immediately preceding layer
and send output to the following layer; with the first layer
nodes receiving input from the training data and the final
layer nodes generating the predictive result. However, as the
popularity of federated learning grows, so does the concern for
its vulnerability to adversarial attacks. Among these attacks,
data poisoning has proven to be a significant threat to the
integrity and reliability of federated learning systems.

Data poisoning is an attack on machine learning models
wherein the attacker adds examples to the training set to
manipulate the behavior of the model at test time. This
paper explores poisoning attacks on neural nets. The proposed
attacks use “clean-labels”; they don’t require the attacker to

have any control over the labeling of training data. They are
also targeted; they control the behavior of the classifier on
a specific test instance without degrading overall classifier
performance.

The paper titled “Data Poisoning Attacks Against Federated
Learning Systems” by Vale Tolpegin, Stacey Truex, Mehmet
Emre Gursoy, and Ling Liu sheds light on the potential
dangers posed by data poisoning attacks in the context of
federated learning. It investigates the effectiveness of defense
mechanisms employed to mitigate these attacks and highlights
their limitations, emphasizing the urgent need for improved
defenses.

The report is structured as follows: first, we will provide a
brief overview of federated learning and data poisoning attacks
to establish a foundation for understanding the problem. Next,
we will summarize the defense system proposed by Tolpegin
et al. and discuss its strengths and weaknesses. Subsequently,
we will present a comprehensive analysis of the identified
vulnerabilities and propose potential strategies to strengthen
the defense against data poisoning attacks in federated learning
systems.

Through this report, we hope to raise awareness about
the pressing need for robust defenses against data poisoning
attacks and contribute to the ongoing efforts in enhancing the
security of federated learning. By identifying and addressing
the weaknesses in existing defense systems, we aim to pave
the way for the development of more resilient solutions that
can withstand adversarial threats.

II. RELATED WORKS

The growing adoption of federated learning has prompted
extensive research into the security and privacy challenges
associated with this distributed learning paradigm. In partic-
ular, the threat of data poisoning attacks has gained signif-
icant attention, as adversaries can manipulate the integrity
of the shared model by injecting malicious data during the
training process. Several research studies have focused on
understanding the vulnerabilities of federated learning systems
to data poisoning attacks and proposing defense mechanisms
to mitigate these threats. In this section, we discuss notable



papers that have contributed to the understanding and defense
against data poisoning attacks in federated learning.

One prominent study in this domain is the work by Bag-
dasaryan et al. [1], which introduced the concept of model
inversion attacks in federated learning. The authors demon-
strated that adversaries with access to the model updates can
infer sensitive information from the aggregated model, thus
compromising user privacy. While this study primarily focuses
on privacy concerns, it highlights the need for robust defenses
to ensure the integrity and reliability of the federated learning
process.

Several poisoning attacks were developed for popular ML
models including SVM [6,12,44,45,50,52], regression [19],
dimensionality reduction [51], linear classifiers [12,23,57],
unsupervised learning [7], and more recently, neural networks
[12,30,42,45,53,58]. However, most of the existing work is
concerned with poisoning ML models in the traditional setting
where training data is first collected by a centralized party. In
contrast, our work studies poisoning attacks in the context of
FL. As a result, many of the poisoning attacks and defenses
that were designed for traditional ML are not suitable to
FL. For example, attacks that rely on crafting optimal poison
instances by observing the training data distribution are inap-
plicable since the malicious FL participant may only access
and modify the training data s/he holds. Similarly, server-side
defenses that rely on filtering and eliminating poison instances
through anomaly detection or k-NN [36,37] are inapplicable
to FL since the server only observes parameter updates from
FL participants, not their individual instances

Another relevant contribution is the research conducted by
Bhagoji et al. [2], which investigated the vulnerability of fed-
erated learning to backdoor attacks. The authors demonstrated
that malicious participants can inject poisoned models into
the federated learning process, leading to compromised model
performance and potential leakage of sensitive information.
Their work emphasizes the importance of detecting and miti-
gating such attacks to maintain the trustworthiness of federated
learning systems.

Furthermore, Shokri et al. [3] explored the possibility of
membership inference attacks in federated learning, where an
adversary aims to determine if a particular data sample was
part of the training dataset. By analyzing the output of the
shared model, adversaries can infer the presence or absence
of specific data instances, raising concerns about data privacy.
The study highlights the need for defenses that prevent such
membership inference attacks and preserve the confidentiality
of user data.

In addition to these studies, recent research by Yang et
al. [4] delves into the domain of adaptive poisoning attacks
in federated learning. The authors proposed a novel attack
strategy where adversaries can adaptively inject poisoned data
based on the knowledge gained during the training process.
Their work sheds light on the dynamic nature of data poisoning
attacks and emphasizes the importance of developing defense
mechanisms that can adapt to evolving adversarial strategies.

Moreover,The rising popularity of FL has led to the in-

vestigation of different attacks in the context of FL, such as
backdoor attacks [2,46], gradient leakage attacks [18,27,59]
and membership inference attacks [31,47,48]. Most closely
related to our work are poisoning attacks in FL. There are two
types of poisoning attacks in FL: data poisoning and model
poisoning. Our work falls under the data poisoning category.
In data poisoning, a malicious FL participant manipulates their
training data, e.g., by adding poison instances or adversarially
changing existing.instances [16,43]. The local learning process
is otherwise not modified. In model poisoning, the malicious
FL participant modifies its learning process in order to create
adversarial gradients and parameter updates. [4] and [14]
demonstrated the possibility of causing high model error
rates through targeted and untargeted model poisoning attacks.
While model poisoning is also effective, data poisoning may
be preferable or more convenient in certain scenarios, since
it does not require adversarial tampering of model learning
software on participant devices, it is efficient, and it allows
for non-expert poisoning participants. Finally, FL. poisoning
attacks have connections to the concept of Byzantine threats,
in which one or more participants in a distributed system
fail or misbehave. In FL, Byzantine behavior was shown to
lead to sub-optimal models or non-convergence [8,20]. This
has spurred a line of work on Byzantine-resilient aggregation
for distributed learning, such as Krum [8], Bulyan [28],
trimmed mean, and coordinate-wise median [55]. While model
poisoning may remain successful despite Byzantine-resilient
aggregation [4,14,20], it is unclear whether optimal data
poisoning attacks can be found to circumvent an individual
Byzantineresilient scheme, or whether one data poisoning
attack may circumvent multiple Byzantine-resilient schemes.
We plan to investigate these issues in future work.

Building upon this existing body of work, the paper by
Tolpegin et al. [5] specifically focuses on data poisoning
attacks against federated learning systems and examines the ef-
fectiveness of defense mechanisms in mitigating these threats.
By critically analyzing their proposed defense system, we aim
to identify its limitations and contribute to the ongoing efforts
in strengthening the security of federated learning against data
poisoning attacks.

III. RESEARCH METHODOLOGY

The objective of the analysis of the paper is to assess the
effectiveness of the defense system proposed by Tolpegin et
al. in mitigating data poisoning attacks in federated learning.In
this paper, the authors study the vulnerability of FL systems to
malicious participants seeking to poison the globally trained
model. They also made minimal assumptions on the capability
of a malicious FL participant — each can only manipulate the
raw training data on their device. This allows for non-expert
malicious participants to achieve poisoning with no knowledge
of model type, parameters, and FL process. Under this set of
assumptions, label flipping attacks become a feasible strategy
to implement data poisoning, attacks which have been shown
to be effective against traditional, centralized ML models The



authors also investigated their application to FL systems using
complex deep neural network models.

The authors implemented FL in Python using the PyTorch
library. By default, they had N = 50 participants, one central
aggregator, and k = 5.They used an independent and identically
distributed data distribution or in other words they assumed
the total training dataset is uniformly randomly distributed
among all participants with each participant receiving a unique
subset of the training data. The testing data is used for
model evaluation only and is therefore not included in any
participant’s trained dataset .Both DNN models converge after
fewer than 200 training rounds.Then the authors set their FL
experiments to run for R = 200 rounds total.

In order to simulate the label flipping attack in a FL system
with N participants of which meach experiment the authors
randomly designated N x mas malicious. The rest are honest
according to the paper. To address the impact of random
selection of malicious participants, by default the authors
repeat each experiment 10 times and report the average results.
Unless otherwise stated, we use m = 10

Now in our investigation we,analyse the defense pro-
cess.According to the authors,the parameter updates sent from
malicious participants have unique characteristics because in
the attack process they used a replacement method which
replaces the parameters from N x m

IV. RESULTS

Updated Attack:After the change of the replacement
method,the vulnerability on the dataset remains the same.Like
the authors,we start by investigating the feasibility of poison-
ing FL systems using label flipping attacks.. Results demon-
strate that as the malicious participant percentage increases
the global model utility (test accuracy) decreases. Even with
small m, we observe a decrease in model accuracy compared
to a non-poisoned model (denoted by MNP in the graphs),
and there is an even larger decrease in source class recall. In
experiments with CIFAR-10, once m reaches 40class decreases
to 0
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Fig. 1. Caption

While both datasets are vulnerable to the updated attack, the
degree of vulnerability varies between datasets with CIFAR-
10 demonstrating more vulnerability than Fashion-MNIST.On
the other hand, vulnerability variation based on source and
target class settings is less clear. In Table 2, we report the
results of three different combinations of source — target
attacks for each dataset. Consider the two extreme settings

for the CIFAR-10 dataset: on the low end the 0 — 2 setting
has a baseline misclassification count of 16 while the high
end count is 200 for the 5 — 3 setting. Because of the
DNN’s relative challenge in differentiating class 5 from class
3 in the non-poisoned setting, it could be anticipated that
conducting a label flipping attack within the 5 — 3 setting
would result in the greatest impact on source class recall.
However, this was not the case. Table 2 shows that in only
two out of the six experimental scenarios did 5 — 3 record
the largest drop in source class recall. In fact, four scenarios’
results show the 0 — 2 setting, the setting with the lowest
baseline misclassification count, as the most effective option
for the adversary. Experiments with Fashion-MNIST show a
similar trend, with label flipping attacks conducted in the 4
— 6 setting being the most successful rather than the 6 —
0 setting which has more than 2x the number of baseline
misclassifications. These results indicate that identifying the
most vulnerable source and target class combination may be
a non-trivial task for the adversary, and that there is not nec-
essarily a correlation between non-poisoned misclassification
performance and attack effectiveness.

Attack Timing in the updated attacks:Like the label
flipping attack,we consider two scenarios in which the adver-
sary is restricted in the time in which they are able to make
malicious participants available: one in which the adversary
makes malicious participants available only before the 75th
training round, and one in which malicious participants are
available only after the 75th training round. As the rate
of global model accuracy improvement decreases with both
datasets by training round 75, we choose this point to highlight
how pre-established model stability may effect an adversary’s
ability to launch an effective attack. similar to label flipping
attack.

Malicious Participant availability:Given the impact of
malicious participation in late training rounds on attack ef-
fectiveness, the authors introduced a malicious participant
availability parameter . By varying the authors simulated
the adversary’s ability to control compromised participants’
availability (i.e. ensuring connectivity or power access) at
various points in training. Specifically, represents malicious
participants’ availability and therefore likelihood to be selected
relative to honest participants. For example, if = 0.6, when
selecting each participant Pi Pr for round r, there is a 0.6 prob-
ability that Pi will be one of the malicious participants. Larger
implies higher likeliness of malicious participation. In cases
where k ; N x mrecall by round when = 0.6 and = 0.9 for both
the CIFAR-10 and FashionMNIST datasets. In both datasets,
when malicious participants are available more frequently, the
source class recall is effectively shifted lower in the graph, i.e.,
source class recall values with = 0.9 are often much smaller
than those with = 0.6. We note that the high round-by-round
variance in both graphs is due to the probabilistic variability in
number of malicious participants in individual training rounds.
When fewer malicious participants are selected in one training
round relative to the previous round, source recall increases.
When more malicious participants are selected in an individual



round relative to the previous round, source recall falls. We
further explore and illustrate our last remark with respect to
the impact of malicious parties’ participation in consecutive
rounds

in consecutive rounds, i.e., ( of malicious Pr) — ( of
malicious Prl). The reported results are then averaged across
multiple runs of FL and all cases in which each participation
difference was observed. The results confirm our intuition that,
when Pr contains.
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Fig. 2. Caption

Defense System: The defense system which has been
proposed in the paper has this insight: the parameter updates
sent from malicious participants have unique characteristics
compared to honest participants’ updates for a subset of the
parameter space.The description of the defense strategy can
be described through the Algorithm . Let R denote the set
of vulnerable FL training rounds and csrc be the class that
is suspected to be the source class of a poisoning attack.
We note that if csrc is unknown, the aggregator can defend
against potential attacks such that csrc = ¢ ¢ C. We also
note that for a given csrc, Algorithm 1 considers label flipping
for all possible ctarget. An aggregator therefore will conduct
—C— independent iterations of Algorithm 1, which can be
conducted in parallel. For each round r R and participant Pi
Pr, the aggregator computes the delta in participant’s model
update compared to the global model, i.e., ,i ¢ r,i r. Recall
from Section 2.1 that a predicted probability for any given
class ¢ is computed by a specific node nc in the final layer
DNN architecture. Given the aggregator’s goal of defending
against the label flipping attack from csrc, only the subset of
the parameters in ,i corresponding to ncsrc is extracted. The
outcome of the extraction is denoted by src ,i and added to
a global list U built by the aggregator. After U is constructed
across multiple rounds and participant deltas, it is standard-
ized by removing the mean and scaling to unit variance.
The standardized list U 0 is fed into Principal Component
Analysis (PCA), which is a popular ML technique used for
dimensionality reduction and pattern visualization. For ease
of visualization, we use and plot results with two dimensions
(two components). Data Poisoning Attacks Against Federated
Learning SIn our updated attack we have tried to break that
unique characteristic by mixing the characteristic. We have
replaced 30 percent of 1 parameter with another which will
give a different graphical representation comparing to the
representation described in the paper.Unfortunately the code

given for the defense in the paper has some technical glitch
for which the graphical representation of the updated attack is
not possible to show.

A. Discussion

Just like the authors approach,we conduct our attacks using
two popular image classification datasets: CIFAR-10 [22]
and Fashion-MNIST [49]. CIFAR10 consists of 60,000 color
images in 10 object classes such as deer, airplane, and dog
with 6,000 images included per class. The complete dataset
is pre-divided into 50,000 training images and 10,000 test
images. Fashion-MNIST consists of a training set of 60,000
images and a test set of 10,000 images. Each image in Fashion-
MNIST is gray-scale and associated with one of 10 classes of
clothing such as pullover, ankle boot, or bag. In experiments
with CIFAR-10, we use a convolutional neural network with
six convolutional layers, batch normalization, and two fully
connected dense layers. This DNN architecture achieves a test
accuracy of 79.90neural network with batch normalization, an
architecture which achieves 91.75test accuracy in the central-
ized scenario without poisoning. Further details of the datasets
and DNN model architectures can be found in Appendix A.

V. CONCLUSION AND FUTURE WORK

In this report, we have conducted a comprehensive analysis
of the defense system proposed by Tolpegin et al. against data
poisoning attacks in federated learning systems. By critically
examining the system’s strengths and weaknesses, we aimed
to identify its limitations and contribute to the ongoing efforts
in strengthening the security of federated learning.

Through our evaluation, we have uncovered several vulnera-
bilities within the defense system. These weaknesses highlight
the challenges of effectively detecting and mitigating data
poisoning attacks in federated learning environments. The
system’s performance was found to be dependent on various
factors, including the attack intensity, defense configuration,
and dataset characteristics. While the defense system demon-
strated promising results under certain scenarios, it showed
limitations in more sophisticated attack settings and dynamic
adversarial strategies.

The findings of our analysis emphasize the need for further
research and development in the area of defense mechanisms
against data poisoning attacks in federated learning systems.
Improvements should focus on enhancing the system’s re-
silience to adaptive attacks, minimizing the impact on model
convergence, and ensuring robust detection of malicious data.

Additionally, it is crucial to explore the practical feasibility
and scalability of the defense system in real-world federated
learning deployments. Considerations such as computational
overhead, communication efficiency, and privacy preservation
should be carefully addressed to enable the adoption of these
defenses in practical settings.

For the future work,we want to add to the defense of such
sort of attacks in a more comprehensive manner .Moreover,the
development of such sort of learning needs to be planned in
a more specific so that they are not vulnerable to attacks.
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