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Abstract—The purpose of the study is to model and simulate
the trends and behavioral patterns in cryptocurrency market and
hence predict the future crypto prices with the Geometric Brow-
nian Motion (GBM) framework. Random (zig-zag) movements
of stock prices is referred to in finance as Brownian motion; and
the Brownian motion model is used to capture the uncertainty
in the returns of risky assets . Modeling stock price changes
with Stochastic Differential Equation (SDE) leads to Geometric
Brownian Motion (GBM) model .

Index Terms—cryptocurrency, markov process, wiener process,
ito process, geometric brownian motion.

I. INTRODUCTION

Brownian motion was discovered in the nineteenth century
by a scientist by the name of Robert Brown (1827). He was
looking at pollen particles floating in water via a microscope
when he made the discovery. Brown came to the conclusion
that the pollen particles were ”alive” after noting that the
particles exhibited a restless motion when he observed them.
This hypothesis was eventually proven to be correct by Albert
Einstein in the year 1905, when he made the observation
that, given the right circumstances, the molecules of water
moved around in an unpredictable manner. Wiener is credited
with having completed the first mathematically rigorous
structure in 1923; this is the reason why Brownian motion is
often referred to as the Wiener process. Brownian motion is
now used as a mathematical model to describe the random
movement of tiny particles in a fluid or gas. Brownian motion
was first described in 1851. These unpredictable swings may
be seen in the markets for cryptocurrencies, where prices are
known to fluctuate erratically both up and down. As a result,
Brownian motion is currently being investigated as a potential
mathematical model for the pricing of cryptocurrencies.

Such simulations are fundamental to data science. They
provide data scientists with the ability to value assets. To put
it another way, they make it possible for data scientists to
construct distributions of assets that are far too complex to
represent analytically.

The approaches involved in simulation are highly adaptable
and are getting simpler to put into practice as computing
technology continues to progress. However, one should not
minimize the risks associated with them in any way. In

spite of their sophistication, the results of simulations are
highly dependent on the assumptions made by the model.
These assumptions include the form of the distribution, the
parameters, and the pricing functions. Data scientists have a
responsibility to have a clear awareness of the impact that it
can have on the results if these assumptions are incorrect.

II. LITERATURE REVIEW

In simulations, one creates artificial random variables that
have features that are comparable to those of the risk factors
that are responsible for the price of the asset. These include
the price of cryptocurrencies, the price of stocks, the exchange
rate, the yield or price of bonds, and the price of commodities.

In recent times, cryptocurrency, and particularly Bitcoin,
has emerged as one of the most popular topics on social
media and search engines. Their extreme volatility creates a
significant opportunity for huge profit, but only if inventive
and thoughtful trading tactics are utilized. It would appear
that everybody all over the world has started talking about
cryptocurrencies all of a sudden. Sadly, as compared to
typical financial instruments, cryptocurrencies, which do not
have their own indexes, are more prone to unpredictability
than they would otherwise be. Any movement in this market
has an effect not only on our personal and corporate financial
lives but also on the state of the economy of a country.
Because of the exceptionally high profits it offers, the bitcoin
market has consistently been one of the most sought after
investment opportunities. However, due to the volatile nature
of the cryptocurrency market, there is always a degree of risk
associated with any investment in this space. Consequently, a
”intelligent” prediction model for the purpose of forecasting
the cryptocurrency market would be quite desirable and
would be of more importance. A trustworthy forecast of
bitcoin prices could open up tremendous profit potential in
the form of rewards and proactive risk management choices.
Because of this goal, researchers in both the private sector
and academic institutions have been hard at work trying to
discover a solution to issues like volatility, seasonality, and
dependence on time, economies, and the rest of the market.



The authors Islam and Nguyen (2020) [1] compare three
strategies for predicting stock prices: the Auto-regressive
Integrated Moving Average (ARIMA), an artificial neural
network (ANN), and a stochastic process (GBM). Each
technique is then put to use to construct forecasting models,
with the Yahoo Finance data serving as the historical stock
data. The stock price is then compared to the results from
the various models. The empirical data shows that when
comparing the neural network model to the more traditional
statistical model and the stochastic model, the latter two
produce a closer approximation for forecasting stock prices
the following day.

The Geometric Brownian Motion model, as emphasized by
Toby and Agbam (2021) [2], is a mathematical model used
to predict the future stock price, and it is both extremely
accurate and profitable. Investors, they said, can use this
information to make informed decisions moving forward. We
first determined that the sample data are normally distributed
and amenable to forecasting using the Geometric Brownian
Motion model by applying the Kolmogorov-Smirnov test and
the Q -Q plot technique. In order to forecast the distribution
of stock returns at a given time ’t,’ the algorithm must first
compute stock returns, drift, and volatility. To model the
stock market in a way that is most similar to the S and
P BSE closing price, simulations were run using the log
volatility equation. In order to proceed with the Geometric
Brownian Motion model, the most accurate value of drift
and volatility is used to pick the forecast simulation using
the real stock closed price. The accuracy of the forecast and
the effectiveness of the model can be evaluated using the
mean absolute percentage error (MAPE). Since the Geometric
Brownian Motion model’s MAPE is less than 10% (5.41%), it
is a very accurate and suitable model for predicting stock price.

Parungrojrat and Kidsom (2019) [3] examined, compared,
and assessed the predictive power of the Geometric Brownian
Motion (GBM) and the Monte Carlo Simulation technique
in forecasting 10 randomly selected stocks in the SET50
of the Stock Exchange of Thailand (SET). Both GBM and
Monte Carlo Simulation were shown to be accurate to within
5% (or 500 times in 10,000 trials) at the highest precision
of +/-0.5/% of expected 45 days returns. The results show
that the model’s ability to correctly anticipate returns at
the end of a period is constrained. In particular, the longer
the timeframe over which the models are assessed, the less
accurate their predictions become. When comparing GBM to
Monte CarloSimulation, neither method outperforms the other
in predicting returns at the conclusion of the period. The
GBM is a well-liked method because of its ability to foresee
future price changes. In addition, Monte Carlo Simulations
provide more reliable results, particularly over a longer period
of time. Overall, both methods provide reasonably accurate
estimates of future stock values. As a result, the methods
can be used for stock price forecasting within the parameters
specified.

Simulating Markov Processes

Financial pricing should exhibit a random walk pattern on
efficient marketplaces. Specifically, it is assumed that prices
follow a Markov process, which is a special stochastic process
independent of its past – the entire distribution of future
prices is based just on the current price, the past prices are
unimportant. Components of these processes, listed in order
of increasing complexity, are as follows:

The Wiener process

This describes a variable ∇z, whose change during the
interval ∇t is measured so that its mean change is zero and
its variance is proportional to ∇t:

∇z ∼ N(0,∇t)

If ϵ is a standard normal variable N(0, 1), this can be written
as:

∇z = ϵ
√
∆t

Moreover, the increments ∇z are independent over time.

The generalized Wiener process

This explains a Wiener process-based variable ∇x with a
constant trend a per unit time and volatility b:

∇x = a∇t+ b∇z

A special case is the martingale, which is a zero-drift
stochastic process, with a=0, resulting in E(∇x) = 0. This has
the advantageous quality that the expected value of the future
is the present value.

E(xT ) = x0

The Ito process

This depicts a generalized Wiener process whose trend and
volatility are dependent on the current value of the underlying
variable and the passage of time:

∆x = a(x, t)∆t+ b(x, t)∆z

This is a Markov process because the distribution depends
only on the current value of the random variable x, as well as
time. In addition, the innovation in this process has a normal
distribution.



III. METHODOLOGY

Normal distribution vs. Lognormal distribution

This model is especially significant since it serves as the basis
for the Black-Scholes formula. The fundamental characteristic
of this distribution is that the volatility is proportional to S.
This ensures the price of bitcoin will remain positive. Indeed,
when the price of bitcoin declines, its variance diminishes,
making it unlikely that it would undergo a huge decline that
would send it into negative territory.
As the limit of this model for dS/S = d ln(S) is a normal
distribution, S follows a lognormal distribution.
This approach indicates that the distribution of the logarithm
of the final price throughout the interval T - t = τ is as follows:

ln(ST ) = ln(St) + (µ− σ2/2)τ + σ
√
τϵ

The Geometric Brownian Motion

A particular example of Ito process is the geometric Brownian
motion (GBM), which is described for the variable S as

∆S = µS∆t + σS∆z

The procedure is geometric because the terms for trend and
volatility are proportional to the present value of ∇S. This is
often the case for bitcoin pricing, where return rates appear to
be more stable than dollar returns, according to S.
It is used for currencies as well.µ shows the predicted total rate
of return on the asset minus the rate of income payment, or
dividend yield in the case of stocks, due to the fact that ∇S/S
represents only capital appreciation and excludes dividend
payments.

IV. EXPERIMENTS

First, we take the current price of bitcoin which is 21500 as of
11 September. Then, we take the volatility (σ) of 5.29 % over
the total interval, which is divided into 30 steps. The volatility
then comes to 0.0529 × (1/30) = 0.00965817443. We use these
values while performing the simulation.
Let’s assume that bitcoin has an expected return of 0% per
annum. This is so that the sudden price drop of bitcoin does
not effect the future prediction in our simulation.

Simulating Bitcoin Price Paths

The Geometric Brownian motion process is approximated in
simulations by small steps with a normal distribution whose
mean and standard deviation are supplied.

∆S

S
∼ N(µ∆t, σ2∆t)

To simulate the future price path for S, we build a sequence
of independent standard normal variables ϵ, for i = 1, 2,..., n,
beginning with the current price St.

The next price St+1 is built as

St+1 = St + St(µ∆t+ σε1
√
∆t

The following price St+2 is taken as

St+1 + St+1(µ∆t+ σε2
√
∆t

and so on until we reach the target horizon, at which point the
price

St+n = ST

should have a distribution close to the lognormal.

V. RESULTS ANALYSIS

Our goal is to predict the brownian motion of cryptocurrency
prices using Geometric Brownian Motion(GBM). There is no
evaluation metrics such as precision, recall, accuracy of f1
score needed to verify the simulation. As cryptocurrency itself
can be very uncertain and we are also using random values as
variables to get variety in out simulation.

Fig. 1. Geometric Brownian Motion Simulation

We are predicting the prices 10 times as seen in Fig. 1. After
the set time period of 30 days the prices shown ranges from
19500 to 23000. As there are more negative outcomes than
positive, it is not a good month to invest in trading bitcoin.
We purposely set out expected return to 0% so that it does not
effect our simulation in any way.

Fig. 2. Geometric Brownian Motion Simulation



We are predicting the prices 100 times as seen in Fig. 2 and
1000 times in Fig. 3. The graph becomes way more dense
with more possible outcomes.

Fig. 3. Geometric Brownian Motion Simulation

Fig. 4. Simulation with expected return of 1% for 1 day

For Fig. 4 and Fig 5. we are taking bitcoin’s expected return
as 1% ans running it on for 1 day and 30 days. For day 1
in Fig. 4 we can see that the graph doesn’t change that much
although it shows more positive result than negative. But for
Day 30 in Fig. 5 we can we dramatic changes in prices.

Fig. 5. Simulation with expected return of 1% for 30 days

Although extremely effective for modeling bitcoin prices, this
model has limitations. Assume that price increases have a
normal distribution. In actuality, we find price fluctuations with
broader tails than the normal distribution predicts. Returns may
also be subject to fluctuating variations.
In addition, when the time period diminishes, the volatility
shrinks as well. This indicates that huge discontinuities cannot
arise over brief periods of time. In actuality, some assets, such
as commodities, suffer distinct jumps. Therefore, the stochastic
process may need to be modified to incorporate these data.
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