
Monte Carlo Simulation of 100 Prisoners Cell
Problem

Md. Sakibur Rahman
dept. computer science and engineering

BRAC University
Dhaka, Bangladesh

md.sakibur.rahman3@g.bracu.ac.bd

Abstract—Mathematical problems are always fascinating and
among them 100 prisoners’ cell problem seemed to be impossible
to solve at the beginning but with time mathematicians have
solved them with different approaches. Among them the naive
approach and the pointer following loop strategy are simulated
in this paper with Monte Carlo modeling and the difference
was remarkable. The pointer following loop strategy approach
showed 30-32% success probability where the naive approach
resulted in a very low probability. In this paper both of the
simulations are shown with nodal visual representation and
graphs.

I. INTRODUCTION

The 100 prisoners problem is a pretty famous problem
in probability theory and combinatorics. It has grown in
popularity since 2003, because of its elegant and surprisingly
efficient solution to a seemingly impossible riddle. The 100
prisoners problem has different renditions in mathematical
literature, but the principle is always the same. We have
implemented the simulation in Monte Carlo model where we
simulate the event thousands of times to get the resultant. The
problem statement is the following

”The director of a prison offers 100 death row prisoners,
who are numbered from 1 to 100, a last chance. A room con-
tains a cupboard with 100 drawers. The director randomly puts
one prisoner’s number in each closed drawer. The prisoners
enter the room, one after another. Each prisoner may open
and look into 50 drawers in any order. The drawers are closed
again afterwards. If, during this search, every prisoner finds
his number in one of the drawers, all prisoners are pardoned.
If just one prisoner does not find his number, all prisoners
die. Before the first prisoner enters the room, the prisoners
may discuss strategy—but may not communicate once the first
prisoner enters to look in the drawers. What is the prisoners’
best strategy?”

II. RELATED WORKS

In this article [6], the authors described the probability of
success and explained the possible optimal solution for two
similar yet little different situations. Firstly, they calculated the
success probability of the 100 people. Since all of the prisoners
only get to open n boxes from a total of 2n boxes, their rate of
succession is (½)100. Which is a really really small rate. They
must be extremely lucky to be successful in this test without

any algorithm. To overcome this rare situation they tried an
algorithm on a smaller scale with 10 boxes. The first idea
they tried was that team members 1-5 examined lockers 1-5,
and team members 6-10 examined lockers 6-10, they would
succeed provided numbers 1-5 are placed in lockers 1-5. But
in this case the probability for member 6-10 is influenced by
the probability of success of member 1-5. The ideal strategy
would be the one where member 1 succeeds then everyone
else does too. Their good strategy is simple to implement and
the choice of the next locker does not depend on the entire
sequence of numbers seen but only on the most recent number.
The good strategy has player Bi start by opening locker i. Then
if he finds number k at any stage and k != i, he opens locker
k next. Notice that player Bi, never opens a locker (other
than locker i) without first finding its number, so each time
he opens a new locker he must find either his own number
or the number of another unopened locker. This creates a
cycle for the players and after calculating the permutations
of 10 numbers and their permutations of created cycles, the
probability of players winning hits overall of 35%, and if we
do the same calculations for 100 players it results around 30-
31%. Which is a far better outcome than the naive approach
to find the specific numbers of the players.

In this paper [3], the author’s algorithm was that Player Pi
starts at the beginning of the bin Bi at box Di. Pi sequentially
checks the next boxes, keeping track of the surplus since Di
until the surplus becomes non-negative (at box mi). Pi opens
box mi, if π(i) =i, then the player is done. Otherwise, Pi starts
again at the beginning of the bin Bπ(i) at box Dπ(i), resets
the surplus and does step 2 and 3 until he finds his number or
has opened b/k boxes. The general idea behind that strategy
is close to the special case in [6]. They could find some better
bounds by tweaking the calculation as Y. Wang did in his
paper [5] by finding a new lower bound on the probability of
success.

In the paper [1], the authors tested the execution time of an
existing optimal strategy to solve the 100 prisoners problem
in both sequential and parallel implementation with graphics
processing units. And they compared the execution times to
see how they vary when the problem size increases.They have
shown that the increased problem size results in improved
GPU usage for specific factors. These factors include memcpy



size and compute utilization. The speed up increases by
increasing the problem size. This relationship is not the result
of the process of a larger data to be processed and we
are using the GPU efficiently. Rather, this is because the
O(n2) sequential algorithm’s execution time grows faster than
the parallel algorithms. On average the parallel user defined
execution performed better than the sequential and parallel
thrust execution.

III. METHODS AND ANALOGY

A. The Naive Approach

If the prisoners start to search for their own boxes in
random order without any sort of predetermined strategy or
algorithm, each individual will succeed in finding his own
number with probability 1/2. If they act independently, they
must get lucky 100 times in a row, and the team will win
with probability only (1/2)100. And if we calculate it we
get a probability of 0.00000000000000000000000000000078.
Which is a really really small number and will take hundreds
of hours of simulation time. So it was convenient to prove it
mathematically

B. The Pointer Following Loop Strategy

• The prisoner will go to the box numbered with his own
cell number.

• If his cell number matches with the number inside the
box, then he will get out.

• Else he will go to the box numbered with the number he
found inside the previous box.

• He will keep searching until he opens 50 boxes.
• If the loop he was following ends, he will start again

from any random numbered boxes and follow the same
strategy until 50 boxes.

C. Analysis of Pointer Following Loop Strategy

According to [two], a permutation of the numbers of the
numbers from 1 to 100 can only contain at most one cycle
of length l > 50, where l is the length of the longest cycle.
We want to calculate how many different permutations would
have a cycle of length l, in order to calculate the probability
of having a cycle of that length.

There are
(
100
l

)
ways to select which numbers are in the

cycle. Within the cycle, there are (l - 1)! ways of organizing the
numbers because of the cyclic symmetry. Lastly, the remaining
numbers can be arranged in (100 - l)! Ways. By consequence,
the numbers of permutations of the numbers from 1 to 100
with a cycle of length l > 50 is(

100

l

)
(l − 1)!(100− l)! =

100!

l
(1)

Since there are a total of 100! possible permutations, then
the probability of success of this strategy is

1− 1

100!
(
100!

51
+...+

100!

100
) = 1−(

1

51
+...+

1

100
) ≈ 0.311 (2)

Even if we increase the number of prisoners to 2n and each
prisoners can open n boxes each, the probability of success
will still always be lower bounded by 1 - ln2 ≈ 0.306.

IV. IMPLEMENTATION AND RESULTS

A. Languages and Libraries

• Pandas - It is used for data manipulation in tabular form.
• Numpy - It is used for numerical calculation and ran-

domized number generation and implementation.
• Tqdm - It is used for Run time Analysis
• Networkx - It is used to visualize the boxes in loops or

cycles in form of nodes.
• Matplotlib - It is used for plotting the result graphs.
• Seaborn - For better visualization for matplotlib
1Our Working Project Code
2Source code

B. The Naive Approach

Fig. 1. Number of Successful Prisoners with the Naive Approach

In this approach we have randomly simulated the prisoners
to pick boxes in random order and the iteration was 5000
times, However the probability distribution was so low it was
very difficult to visualize the plot for 5000 iterations. In Fig. 1
the result is shown and it follows a normal distribution. As it is
a randomly generated simulation the values will change each
time we run the simulation but the probability will always be
very low.The total run time was 36 seconds to simulate the
event with 138.88 iterations per second.

C. The Pointer Following Loop Strategy

After applying the Pointer Following Loop strategy, the
probability of success for 100 prisoners increased significantly.
We can notice in Fig. 2, among 5000 iterations, 45-50 pris-
oners have found their boxes less than 4% of the time. On
the other hand, 100 out of hundred prisoners have found
their boxes around 1500-1600 iterations. So the probability
of success is between 31-32%. To be more precise, the
probability was 0.3124. It will change every time we re-run
the simulation but the change will be very insignificant. The

1Simulation of 100 Prisoners Problem with Monte Carlo Modeling
2Source of Our Code: Kaggle Notebook

https://github.com/redtreex/Simulation-of-100-prisoners-cell-problem
https://www.kaggle.com/code/robikscube/100-prisoner-riddle-simulation/notebook


Fig. 2. Number of Success with Pointer Following Loop Strategy

total run time for this strategy was close to 3 seconds with
1746.42 iterations per second. Which is very efficient as well
compared to the naive approach.

V. MONTE CARLO SIMULATION

According to [2] The Monte Carlo method is, broadly,a
technique that solves mathematical problems by solving their
statistical analogues, by subjecting random numbers to numer-
ical processes. The method uses statistical sampling to obtain
solutions to deterministic or stochastic problems that cannot
readily be solved using closed-form techniques.

A. Areas of Applications

From [7], We get that Monte Carlo methods are especially
useful for simulating phenomena with significant uncertainty
in inputs and systems with many coupled degrees of freedom.

• Physical Sciences: Monte Carlo method is used in com-
putational physics, physical chemistry, and related ap-
plied fields. It has diverse applications from complicated
quantum chromodynamics calculations to designing heat
shields and aerodynamic forms as well as in modeling
radiation transport for radiation dosimetry calculations

• Engineering: Monte Carlo methods are extensively used
in engineering for sensitivity analysis and quantitative
probabilistic analysis in process design.

• Computer Graphics:In Path tracing or we can also call
it ray tracing, repeated sampling of any given pixel will
eventually cause the average of the samples to converge
on the correct solution of the rendering equation, making
it one of the most physically accurate 3D graphics ren-
dering methods in existence. Because of this we can get
more accuracy in lighting and shadow effects.

• Computational Biology: Monte Carlo methods are used
for Bayesian inference in phylogeny, or for studying bio-
logical systems such as genomes, proteins, or membranes.

• Applied Statistics: In applied statistics, Monte Carlo
methods may be used for comparing competing statistics
for small samples under realistic data conditions, provide
implementations of hypothesis tests that are more efficient
than exact tests such as permutation tests (which are
often impossible to compute) while being more accurate

than critical values for asymptotic distributions and To
provide a random sample from the posterior distribution
in Bayesian inference.

• Artificial Intelligence for Games: Monte Carlo methods
have been developed into a technique called Monte-Carlo
tree search that is useful for searching for the best move
in a game.

B. Our Implementation

We have used the traditional and similar approach as coin
toss simulation and calculating the value of pi using Monte
Carlo simulation in our problem. To prove the mathematical
proof we needed to run the even multiple times and almost all
the times it showed the similar result.

Fig. 3. Success Probability vs Iteration plot in Monte Carlo modeling
approach

In Fig. 3, The visualization of success probability has
been shown in Monte Carlo simulation. We can notice the
probability of success is increasing with the iteration (N=5000)
and crossing the threshold of 30% and the probability in
this simulation was 0.327. But with every run of the whole
operation the success probability will change because the
operation is very random.

VI. DISCUSSION

Fig. 4. Generated Loops while simulating in form of Directed Nodes



Among the two approaches we have implemented, the
pointer following loop strategy has shown remarkably effi-
cient results with less run time than the naive approach.The
underlying idea for loop strategy is the created loops while
looking for a specific box. According to [4] the loop strategy
works because

• Boxes are ”linked” to each other.
• You can think of this in terms of a graph network where

the boxes are nodes and the paper is an edge.
• The graph consists of any number of ”loops”.
• By starting with their own number the prisoner is guar-

anteed to be in their own loop.
• If the largest ”loop” within the graph is less than 50, all

prisoners will succeed.
There is a one percent chance that a random arrangement

of slips results in a loop of length 100 and this is a general
result the probability that we get a loop of length 99 is 1 over
99. The probability that we get a loop of length 98 is 1 over
98. so the probability that there is a loop longer than 50 is
(1/51+1/52+1/53+ ...) and after adding all these up and it
equals 0.69 there is a 69% chance of failure for the prisoners
meaning a 31% chance of success where the longest loop is
50 or shorter.

VII. CONCLUSION

Both of the approaches we have simulated have shown the
expected results compared to the mathematical proof. The
Loop strategy has shown better results in case of success
probability and run time. However it depends on the generated
loops , so it has a dependency on previously found nodes. On
the other hand, the naive approach was very inefficient in case
of success probability and run time but it has no dependencies
on the previous or next box because the boxes were selected
randomly.

REFERENCES

[1] F. Jenabi and H.-R. Hamidi. The 100 prisoners prob-
lem: Parallel execution using graphics processing unit.
Journal of Telecommunication, Electronic and Computer
Engineering, 9:211–215, 2017.

[2] R. E. Marks. Monte Carlo, pages 1–4. Palgrave Macmillan
UK, London, 2016. ISBN 978-1-349-94848-2. URL https:
//doi.org/10.1057/978-1-349-94848-2 709-1.

[3] T. Schoen. Introduction to the general case of
the 100 Prisoners Problem. May 2018. URL
https://math.mit.edu/∼apost/courses/18.204 2018/
Timothee Schoen paper.pdf.

[4] Veritasium. The riddle that seems impossible even if you
know the answer, June. 2022. URL https://www.youtube.
com/watch?v=iSNsgj1OCLA.

[5] Y. Wang. Project report - the locker puzzle, Nov. 2015.
[6] M. Warshauer and E. Curtin. The locker puzzle.

The Mathematical Intelligencer, 28(1):28–31, Dec. 2006.
doi: 10.1007/bf02986999. URL https://doi.org/10.1007/
bf02986999.

[7] Wikipedia. Monte Carlo method — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=
Monte%20Carlo%20method&oldid=1107916943, 2022.
[Online; Accessed 11-September-2022].

https://doi.org/10.1057/978-1-349-94848-2_709-1
https://doi.org/10.1057/978-1-349-94848-2_709-1
https://math.mit.edu/~apost/courses/18.204_2018/Timothee_Schoen_paper.pdf
https://math.mit.edu/~apost/courses/18.204_2018/Timothee_Schoen_paper.pdf
https://www.youtube.com/watch?v=iSNsgj1OCLA
https://www.youtube.com/watch?v=iSNsgj1OCLA
https://doi.org/10.1007/bf02986999
https://doi.org/10.1007/bf02986999
http://en.wikipedia.org/w/index.php?title=Monte%20Carlo%20method&oldid=1107916943
http://en.wikipedia.org/w/index.php?title=Monte%20Carlo%20method&oldid=1107916943

	Introduction
	Related Works
	Methods And Analogy
	The Naive Approach
	The Pointer Following Loop Strategy
	Analysis of Pointer Following Loop Strategy

	Implementation And Results
	Languages and Libraries
	The Naive Approach
	The Pointer Following Loop Strategy

	Monte Carlo Simulation
	Areas of Applications
	Our Implementation

	Discussion
	Conclusion
	References

